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@ Key Messages for Hurricane Melissa

Advisory 31: 11:00 PM EDT Tue Oct 28, 2025

1. Jamaica: Although Melissa is pulling away from the island,
deadly hazards remain including downed power lines and flooded
areas. Ensure generators are properly ventilated and placed
outside at least 20 feet away from doors, windows, and garages
to avoid carbon monoxide poisoning. If you are cleaning up storm
damage, be careful when using chainsaws and power tools, and
drink plenty of water to avoid heat exhaustion.

2. Haiti and the Dominican Republic: Catastrophic flash flooding
and landslides are expected across southwestern Haiti and
southern portions of the Dominican Republic during the next day
or so. In Haiti, extensive damage and isolation of communities

is likely. Tropical storm conditions are expected into

Wednesday.

3. Eastern Cuba: Life-threatening storm surge, flash flooding

and landslides, and extremely damaging

hurricane winds are

likely through Wednesday morning. Seek safe shelter now.

4. Southeastern and Central Bahamas and the Turks and Caicos:
Hurricane conditions, life-threatening storm surge, and heavy
rainfall are expected across portions of the southeastern and
central Bahamas on Wednesday. Complete preparations by tonight
and follow local official guidance. Tropical storm conditions,

heavy rains, and significant storm surge
Turks and Caicos Islands on Wednesda

are expected in the
y.

5. Bermuda: Hurricane conditions and heavy rainfall are possible
in Bermuda beginning Thursday or Thursday night, where a

Hurricane Watch is in effect.
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What is a fluid?

“A portion of matter that cannot withstand any tendency by applied forces to
deform it in a way which leaves the volume unchanged.

A simple fluid may offer resistance to attempts to deform it, but this
resistance cannot prevent the deformation from occurring, or equivalently,
the resisting force vanishes with the rate of deformation”

(Bachelor 1967)



Examples of fluids




Dealing of fluids




Leonhard Euler («Eulero»)
Basilea 1707 — San Pietroburgo
1783)

INSTITVTIONVM
CALCVLI INTEGRALIS

VOLVMEN PRIMVM

IN QVO METHODVS INTEGRANDI A PRIMIS PRIN.
CIPIIS VSQVE AD INTEGRATIONEM AEQVATIONVM DIFFE
RENTIALIVM PRIMI GRADVS PERTRACTATVR.

AVCTORE

LEONHARDO EVLERO

ACAD. SCIENT. BORVSSIAE DIRECTORE VICENNALI ET SOTIO
ACAD. PETROP. PARISIN. ET LONDIN.
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PETROQPOLT
Impenfis Academiae Imperialis Scientiarum
176 8.
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PRINCIPES GENERAUX
PU MOUVEMEN‘T DES FLUID_ES-_’
paR M. EULER, ‘

L

A}'ant ¢rabli dans mon Mémoire précedent Jles principes de I'équili-

bre des fluides le plus généralement, tant & 'égard de la diverfe
qualité des fluides, que des forces qui y puiffent agir ; je me propo-
fe de traiter fur le méme pied 1¢ mouvement des fluides, & de recher.
cher les principes géneraux, fur lesquels toute la fcience da mouve-
ment des fluides eft fondée. On comprend aifément que cette matie-
re eft beaucoup plus difficile, & qu’elle renferme des recherches in-
comparablement plus profondes : cependant jefpére d'en venir auffi
heureufement a bout, de forte que s'il y refte des difficultés, ce ne fera
pes du coté du méchanique, mais uniquement du c6té de I'analytiques
cette fcience n’érant pas encore portée & ce degré de perfection, qui
feroit néceflaire pour déveloper les formules analytiques, qui renfer-
ment les principes du mouvement des fluides.

M. 1l s'agit donc de découvrir les principes, par lesquels on
puiffe déterminer le mouvement d'un fluide, en quelque érar qu'il fe
trouve, & par quelques forces qu'il foit fallicité.  Pour cert effer exa-
minons en détail tous les articles, qui conftituent le fujet de nos re-
cherches, & qui renferment les quantités tant connues qu'’inconnues.
Er d’abord la narure du fluide eft fuppofée connue , dont il faur confi-
dérer les diverfes efpeces : le fluide eft donc, ou incompreffible, ou
compreffible.  §'il n'eft pas fusceptible de compreffion, il faur diftin-
guer deux cas, 'un ol toute la maffe eft compofée de parties homo-
genes, dont la denfité eft partout & demeure toujours la méme, I'au-

tre
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Giuseppe Luigi Lagrang
(Torino 1736 — Parigi 181:

- @UVRES

DE LAGRANGE,

DE M. J.-A. SERRET, . -

SOUS LES AUSPICES

DE SON EXCELLENCE
LE MINISTRE DE L'INSTRUCTION PUBLIQUE.

PARIS, ‘
GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE

DE L'ECOLE IMPERIALE POLYTECHNIQUE, DU BUREAU DES LONGITUDES,
SUCCESSEUR DE MALLET-BACHELIER,
Quai des Augustins, 55.

MDCCC LXIX

MEMOIRE

SR LA

THEORIE DU MOUVEMENT DES FLUIDES".

(Nowveanw: Mémoires de U Académie royale des Sciences et Belles-Lettres
de Berlin, année 1781.)

Depuis que M. d’Alembert a réduit 2 des équations analytiques les
vraies lois du mouvement des fluides, cette matiere est devenue I’objet
d’'un grand nombre de recherches qui se trouvent répandues dans les -
Opuscules de M. d’Alembert, et dans les Recueils de cette Académie et de
celle de Pétersbourg. La Theéorie générale a été beaucoup perfectionnée
dans ces différentes recherches; mais il n’en est pas de méme de la partie
de cette Théorie qui concerne la maniere de Pappliquer aux questions
particulieres. M. d’Alembert parait méme porté a croire que cette appli-
cation est impossible dans la plupart des cas, surtout lorsqu'il 'agit du
mouvement des fluides qui coulent dans des vases.

Apres avoir soigneusement étudié tout ce qui a déja été écrit sur la
Théorie rigourcuse du mouvement des fluides, je me suis appliqué &
lever, ou du moins a diminuer les difficultés qui ont retardé les progres
de cette Théorie, et ont obligé les Géometres a se contenter, pour la so-
lution des Problemes les plus simples, de méthodes indirectes, ou fon-

{*) Lu le 22 novembre 1781.



Eulerian approach Lagrangian approach
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Rotation of the coordinate system

Now suppose that the coordinate system is rigidly rotated to a new position
0123 as shown in Fig. 2.2 and the new coordinates of P are X;, X,, X;. The
rotation can be specified by giving the angles between the old and new axes.
Let /,; be the cosine of the angle between the old O axis Oi and the new one
Oj, then the new coordinates are related to the old by the formulae

A3

x‘j = Iljx]_ -+ lzsz -+ Iijs, j === 1, 2, 3,

and conversely
xz‘ _— l‘ilf]. + 122x~2 "J[— liax..a, i= 1, 2, 3.

(Aris 1962)




2.41. Second order tensors

The vector or first order tensor was defined as an entity with three com-
ponents which transformed in a certain fashion under rotation of the coordi-
nate frame. We define a second order Cartesian tensor similarly as an entity
having nine components 4,;, i, j = 1, 2, 3, in the Cartesian frame of reference
0123 which on rotation of the frame of reference to 0123 become

A, =11.A,. 2.41.1)

t1p'3a
By the orthogonality properties of the direction cosines /., we have the inverse
transformation

m:

Ay = IivaGA-m' (2.41.2)

To establish that a given entity is a second order tensor we have to demon-
strate that its components transform according to Eq. (2.41.1). A valuable
means of establishing tensor character is the quotient rule which will be
discussed later in Section 2.6.




If a and b are two vectors the set of nine products a,b, = A,; is a second
order tensor, for
A pa =4 vbc = l,8dib; = lipli(a:b;)
= I;pquA.'}. (2.42.2)
An important example of this is the momentum flux tensor for a fluid. If pis

the density and v the velocity, pv, is the i™" component in the direction Oi.
The rate at which this momentum crosses a unit area normal to Of is pv;v,.



2.44. Contraction and multiplication

The operation of identifying two indices of a tensor and so summing on
them is known as contraction.

The suffix notation makes quite clear just which contraction is involved.
However, the notation of a scalar product is sometimes useful. In this

notation the tensor with components A;;B,, is written A «+ B the summation
being over adjacent suffixes.

The product 4,,a; of a vector a and tensor A is a vector whose i*" component
is A;;a;. Another possible product of these two is A4;a;. These may be
written A + a and a + A respectively.

The doubly contracted product A4,,B;, is a scalar, and this may be written
A:B.




2.62. The quotient rule

We have constantly remarked that to prove that a given set of quantities
forms the set of the components of a tensor requires that we show that they
transform according to the rule of tensor transformation. A short cut in
establishing tensorial character is the so-called quotient rule. The simple case
we shall prove is as follows: 1f 4,4, j = 1, 2, 3 are nine quantities and band ¢
are vectors, b being quite independent of the 4,;, and 4,,6; = ¢;, then the 4,,

are components of a tensor A. The value of this is that a relation A+b = ¢

may arise in the study of a physical situation in which it is known that b and ¢
are vectors. Then the quotient rule establishes that A is a tensor and we are
now assured that the equation holds in all coordinate frames.



The velocity vector field

V(X t)
X
A

X3A

v; = U,-(xl,xz, x3,t) i=1,2,3



The velocity gradient tensor

oui aU,-_I_an +l<ﬂ_ﬂ>
an - ) axj axi 2 axj 6x,-

e,-j + Qij

e deformation or rate of strain tensor

(2 rate of rotation tensor



The rate of strain tensor
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The rate of rotation tensor
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Vorticity




External (or body or long-range) forces

X3 A
dV

P '

X4

Total external force exerted on the volume V : }pf dV
1%4



Internal (or surface or short-range) forces

A
X3

n

dS

X4

Total force exerted by external forces on the volume V through its

bounding surface S: "t(n)dS



Cauchy’s stress principle

The stress ¢, is a function of the position x,

the time t, and the orientation n of the
surface element:

ty(xn,t)

Augustin-Louis
Cauchy (1789 — 1857)



Conservation of linear
momentum

—Jpv dV = [pde+ Jt(n)dS
S

-> Similar reasoning for angular momentum



Let £ be a characteristic linear dimension of a fluid
body having a volume V bounded by a surface S.

Then the volume will be ~£°, while the bounding
surface will be ~#°, with the proportionality constants
depending only on the shape.

Let the body shrink to a point, while preserving its
shape: then the volume integrals will decrease as #° ,
while the surface integral will decrease as 2.

From conservation of linear momentum it follows that:

|
S

In other words, the stress are always locally in
equilibrium.



To elucidate the nature of the stress system at a point P we consider a small
The stress tensor tetrahedron with three of its faces parallel to the csordinate planes through P
and the fourth with normal n (see Fig. 5.1). If d4 is the area of the slant face,
the areas of the faces perpendicular to the coordinate axis Pi is d4; = n, dA.
The outward normals to these faces are —e(;) and we may denote the stress
vector over these faces by —t;). (t;, denotes the stress vector when --e) is
the outward normal.) Then applying the principle of local equilibrium to the
stress forces when the tetrahedron is very small we have

t,) dA — ty) dA, — t dA, — t5 dA
J ton /S (n) 1) 43 — Yy 44 (3) “43
= (t) — taym — tigty — tigyny) dAd =0,

o)

"(z)dAz

~8(2) P




Now let T}, denote the i** component of t;, and f,,, the i component of
t..) so that this equation can be written

t(n)i o T,—in,-. (5.12.2)

However, t,,, is a vector and n is a unit vector quite independent of the T}; so
that by the quotient rule the T;; are components of a second order tensor T.
In dyadic notation we might write

t(,n) 0 | T. (5.12.3)

This tells us that the system of stresses in a fluid is not so complicated as to
demand a whole table of the functions t,,(x, n) at any given instant, but that
1t depends rather simply on n through the nine quantities 7;,(x). Moreover,
because these are components of a tensor, any equation we derive with them
will be true under any rotation of the coordinate axes.




Inserting Eq. (5.12.2) in Eq. (5.11.3) and using Green’s theorem we have

ofidV + | [Tyn, ds
S

(5.12.4)

(5.12.5)

d
2 [{fomav=[[Jo%av=]]
=[[JUefi + T av

4

However, since V is an arbitrary volume this equation is only satisfied if

dv; _
p— =pht
or
dv
a=p—=pf+V.T,

pA=p =P T

where & = dv/dt is the acceleration. This is Cauchy’s equation of motion.

It holds for any continuum no matter how the stress tensor T is connected

with the rate of strain.




5.14. Hydrostatic pressure

If the stress system is such that an element of area always experiences a
stress normal to itself and this stress is independent of the orientation, the
stress 1s called hydrostatic. All fluids at rest exhibit this stress behavior. It
implies that n - T is always proportional to n and that the constant of propor-
tionality is independent of n. Let us write this constant —p, then

n,-Ti, = —pn,-. (5.14.1)

However, this equation means that any vector is a characteristic vector of T
which must therefore be spherical. Thus

Ty = —poy (5.14.2)

for a state of hydrostatic stress.

For a compressible fluid at rest, p may be identified with the pressure of
classical thermodynamics. On the assumption that there is local thermo-
dynamic equilibrium even when the fluid is in motion this concept of stress
may be retained. For an incompressible fluid the thermodynamic, or more
correctly thermostatic, pressure cannot be defined except as the limit of
pressure in a sequence of compressible fluids. We shall see later that it has to
be taken as an independent dynamical variable.



The stress tensor may always be written
Ty = —poy; + Py,

and P;; is called the viscous stress tensor. The mean of the three stresses
Ti4, To, and Tgg 1s

%Tii = —p + %’Pﬁ- (5.14.2)

In the case of hydrostatic stress, where P;; vanishes, this mean stress equals
the thermostatic pressure. We shall show later that for the incompressible
Newtonian fluid this is also true, but a distinction must be made in general
between the mean stress and the pressure. A perfect fluid is one for which
P,; vanishes identically.



5.21. The Stokesian fluid

I. The stress tensor 7; is a continuous function of the deformation
tensor e;; and the local thermodynamic state, but independent of other
kinematical quantities.

II. The fluid is homogeneous, that is, T;; does not depend explicitly on x.
[II. The fluid is isotropic, that is, there is no preferred direction.
IV. When there is no deformation (e;; = 0) the stress is hydrostatic,

(T = —poy).

George Gabriel Stokes
(1819 —1903)



3.22. Constitutive equations of the Stokesian fluid

Ty = (—=p + @) 0;; + Pey; + veuey;. (5.22.6)

p depends only on the thermodynamic state but «, 8, and y depend as well on
the invariants of the rate of strain tensor. This gives ample scope for the
fitting of exceedingly complex relations, but the tensorial character is
prescribed by the assumptions.

If the fluid is compressible, the thermodynamic pressure is a well-defined

quantity and we should take p equal to this. Then, by the fourth assumption,
o = 0 when e; = 0. If the fluid is incompressible, the thermodynamic
pressure is not defined and pressure has to be taken as one of the fundamental
dynamical variables. We are at liberty to do this in the simplest possible way

so that without losing any generality we can absorb « into the pressure p and
write

T,y = —po;; + Bey; + yeueri (5.22.7)

which insures that 7 reduces to the hydrostatic form when the deformation
vanishes.



5.23. The Newtonian fluid

The Newtonian fluid is a linear Stokesian fluid, that is, the stress com-
ponents depend linearly on the rates of deformation.

Ti! = (—P + l@)atj + 2#8,-’-. (5.234)

Consider the shear flow given by
n =f(x)), vy=1v3=0. (5.24.1)

For this we have all the e;; zero except

€19 = €9 = ‘}f'(xz). (5.24.2)
Thus

P12 . le = ”f’(XZ) (5.24.3)

and all the other viscous stresses are zero. This is shown in Fig. 5.2 and it is
evident that y is the proportionality constant relating the shear stress to the
velocity gradient. This is the common definition of the viscosity, or more
precisely the coefficient of shear viscosity, of a fluid.

2
* vy 'f(xz)
/
>/
/
—r
g 7/
—
0
Fig. 5.2

3 {



6.11. Equations of motion of a Newtonian fluid

Cauchy’s equation of motion is

pa; = p%'{'-E = pfi + T, (6.11.1)
for the symmetric stress tensor, which is related to the rate of strain tensor by
T.; = (—p + A0)d;; + 2pue,;. (6.11.2)
P2 = pfi— g" + @+ #)-—- VoV + 4V, (6114)

Equation (6.11.4) is the i component of
a= -‘% = %‘;{ + (v V)v=1f— %Vp + (A +»WV(V-v)+ sV (6.11.5)

where v = u/p, A’ = A/p. vis known as the kinematic viscosity and if Stokes’
relation is assumed 2" + ¥ = »/3. For an incompressible fluid we have

Navier-Stokes equation dv =f— 1 Vp + ¥V, (6.11.6)

dt p
and for an incompressible inviscid or perfect fluid the equations drop out
by setting » = 0.
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Suggested readings

Aris, R., 1962: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Books on
Mathematics
Pdf file available at this link.
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Tennekes, H. and Lumley, J., 1972: A First Course in Turbulence. MIT Press
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Galley of Fluid Motions
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J.15. Principal axes of stress and the notion of isotropy

The diagonal terms T;,, Ty, T35 Of the stress tensor are sometimes called the
direct stresses and the terms Tyq, Tyy, Ta1, T13, Tog, T30 the shear stresses. When
there are no external or stress couples, the stress tensor is symmetric and we
can invoke the known properties of symmetric tensors. In particular, there
are three principal directions and referred to coordinates parallel to these, the
shear stresses vanish. The remaining direct stresses are called the principal
stresses and the axes the principal axes of stress. The mean pressure —p is one
third of the trace of the stress tensor and so is the mean of the principal

stresses. | ‘
An isotropic fluid is such that a simple direct stress acting in it does not

produce a shearing deformation. This is an entirely reasonable view to take
for isotropy means that there is no internal sense of direction within the fluid
so that a direct stress, say

711#0, T,-,xo i,j#l,

should not produce any differential motion in planes parallel to its line of
action, in this case the axis O1. Another way of expressing the absence of any
internally preferred direction is to say that the functional relation between
stress and deformation must be independent of the orientation of the coordi-
nate system.



