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Since 2021, the TensorDec Laboratory is a recipient for activities of
research, teaching, mentoring and networking about
algebra, geometry and applications of tensor decompositions
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Lost in the labyrinth of Tensors.
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TensorDec Laboratory: who we are

Before diving into thesis buzz

Valentina Amitrano Dario Antolini

Why should you knock at those doors? What are tensors and what do we do
with them?




What are tensors?

Tensors are multidimensional boxes for organizing numbers, much like matrices
are boxes for organizing numbers in two ways.

Sealar Vector Mlitnx Tensor
(o0} |
S I

Like matrices, tensors are extremely useful and versatile.

They can be viewed as:

e Tables — Boxes of numbers with a certain order.
e Linear — Multilinear maps.

e Elements of the Matrix — Tensor space.




Tensors: as boxes of numbers

Multidimensional numerical arrays:

Tisues 1

Individuals

Mode 1 (spatial column)

-
Gene expression data

Used to store tons of data Voo 2 epatal o)

S )

Algorithms for Tensor Decompositions (come to our courses/masterclasses):

v
e Tucker Decomposition: U = (Ui, Uz, Us)C: .

e Rank Decomposition (parafac/candecomp/cpd):
Pt |

U= Uil ® uip ® uj3: ﬁ-'

extract meaningful information




Tensors: as multilinear maps

A matrix M € W ® V is equivalent to a linear map fy : V — W.

Multilinear maps

MaMus : ((Cz’z)><2 — c2?
((Sn a12> (bn b12>) . (311 bi1 + aweba  aubi + an b22>
an  an)’ \ba bx ax b1 + axnby1  anbix + anbx
(C**)®* 5 MaMu; = (a1 ® biy + a12 @ b)) ® ci1 + (a1 ® b1z + a12 @ b)) @ ci
+ (321 ® bi1 + a2 ® ba1) ® 1 + (a1 @ b2 + axn ® b)) ®

A decomposition of MaMus highlights an algorithm.

The rank decomposition highlights the best one. Rank = Complexity —
Complexity Theory.

If the algorithm is encoded in a Quantum Circuit: Complexity = Entanglement
of the state — Quantum Information.




Tensors: as points in the space

Points of a tensor space: matrix M e W ® V, tensorf € Vi ® --- ® Vy

This perspective allows to study tensors by their common properties, using
global techniques like algebraic-geometric methods (both symbolic and
numerical) to extract shared information among them.

e Mima Stanojkovski: “Tensors in finite group theory"”.

Alessandro Oneto: “Tensors into algebraic statistical models”.

Elisa Postinghel: “Tensors and polynomial interpolation”.

e Alessandra Bernardi: “Symbolic algorithms for Tensor Decomposition”.

Edoardo Ballico: "Algebraic Geometry aspects of Tensors”.




TensorDec Laboratory: studying with us - Mentoring

We mentor theses

Algebra

e Commutative and non commutative algebra, Group theory, Scheme theory.

e Interdisciplinary and Industrial: Quantum physics, Data science.

Algebraic Geometry

F

Alessandro Oneto  Elisa Postinghel  |Edoardo Ballico

e Birational geometry, Computational geometry, Teaching.

e Interdisciplinary and Industrial: Data science, Algebraic statistics.




TensorDec Laboratory: what we do - Teaching

Courses (Mathematics for Data Science, Q@TN):

e Tensor Decompositions for Big Data Analysis (A. Bernardi)

e Geometry and Topology for Data Analysis (A. Oneto)

We organize annual Masterclasses taught by international guests:

8-17 November 2021 17-21 October 2022
Polo Ferrari - Povo 1 Polo Ferrari - Povo 1

Masterclass
Tensor Decompositions
and their applications

Masterclass
Introduction to
Algebraic Statistics

N. Vannieuwenhoven 7 \
(KU Leuven, BE) K. Kubjas (Aalto U., FI)
9 - 13 October 2023 | Polo Ferrari - Povo |

Masterclass.
Introduction to Algebraic Vision
and Multifocal Tensors

Kathlén Kohn - 7/
(KTH Stockholm)




TensorDec Laboratory: working with us - Networking

PhD opportunities (more than the standard call):

e Industrial PhD (just closed)
e Transdisciplinary Doctoral Program Q@TN
e Horizon: Marie Curie Double Degree (IT & abroad):

_ TENORS .
Tensor modEliNg, geOmetRy and optimiSation
Marie Sktodowska-Curie Doctoral Network [Ell
2024-2027

Tensors are nowadays ubiquitous in many domains of applied mathematics, computer science,
signal processing, data processing, machine learning and in the emerging area of quantum

computing. TENORS aims at fostering cutting-edge research in tensor sciences, stimulating

and knowledge between algebraists, geometers,

computer scientists, numerical analysts, data analysts, physicists, quantum scientists, and

industrial actors facing real-life tensor-based problems.

Partners: Associate partners:
@ !nria, Sophia Antipolis, France (B. Mourrain, A. Mantzaflaris) @ Quandels, France
@ CNRS, LAAS, Toulouse, France (D. Henrion, V. Magron, M. Skomra) @ Cambridge Quantum Computing, UK
© NWO-1/CWI, Amsterdam, the Netherlands (M. Laurent) © Bluetensor, Italy.
@ Univ. Konstanz, Germany (M. Schweighofer, S. Kuhimann, M Q Ana AS, Norway
Michatek) o HSBC Lab., London, UK.
@ MPI, Leipzig, Germany (B. Sturmfels, S. Telen)
@ Univ. Tromsoe, Norway (C. Riener, C. Bordin, H. Munthe-Kaas) 15 PhD positions

@ Univ. degli Studi di Firenze, Italy (G. Ottaviani)

2024-2027
@ Univ. degli Studi di Trento, Italy (A. Bernardi, A. Oneto, I. Carusotto) ( )

© CTU, Prague, Czech Republic (J. Marecek) (recruitment expected around Oct. 2024)

@ 1CFO, Barcelona, Spain (A. Acin) Scientific coord: B. Mourrain
@ Artelys SA, Paris, France (M. Gabay) Adm. manager: Linh Nguyen 4




TensorDec Laboratory: working with us - Networking

Post Doc opportunities: We are members of the
Italian Network for Applied and Birational Algebraic Geometry (INABAG)

https://sites.google.com/unitn.it/inabag/




Tensors and polynomial interpolation

Let Ry := R[Xl,xz]d be the space of polynomials of degree < d.
Let S = {p1,...,ps} be a set of distinct points in R?.
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e Simple points:
Ly(S)={feR:f(p)=0,Vi=1,...,s} CR
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Tensors and polynomial interpolation

Let Ryg := R[x1, x2]4 be the space of polynomials of degree < d.
Let S = {p1,...,ps} be a set of distinct points in R?.

Polynomial interpolation problems:

e Simple points:
Ly(S)={feR:f(p)=0,Vi=1,...,s} CR

e Double points:

Lq(2S) ={F € Ry: f(pi) = o= f(p) = 55 f(p) =0,V =1,...
e Multiple points:

Lg(mS) = ...




Tensors and polynomial interpolation

Rq :=R[x1,..., Xnd
S:{pl,.,.,pg} C R".

\L passing to algebraically closed fields

R ,d = ",,[X17 500 -,Xn]d
S={p1,...,ps} C C".
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S:{pl,.,.,pg} C R".

\L passing to algebraically closed fields

R ,d = ",,[X17 500 -,Xn]d
S={p1,...,ps} C C".
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Rﬁg:(’;”“:‘ 0= C[X{L X1... 7X”]d
S={p,...,ps} CPL.




Tensors and polynomial interpolation

Ry := IR[Xl7 - 7Xn]d
S={p1,...,ps} CR". o

\L passing to algebraically closed fields

R ,d = ‘:[X17 500 ,Xn]d
S={p1,...,ps} CC".

4 homogenising/projectivising i
homog ,__ J/
Rcc,d :=Clxo, X1 ..., Xn]d
o d—i—j i j
S={p1,...,ps} CPL. F(x0, x1, x2) = E ajjxg | Ix1xg
i

e Double point polynomial interpolation:
La(2S) = {F € RE™® 2 F(p)=0Yi=1,...,5Y=0...,n}




Tensors and polynomial interpolation

Slogan
Double point polynomial Dimensionality of secant varieties to
interpolation problems varieties of rank one symmetric tensors

O’t(Xd)




Tensors and polynomial interpolation

Slogan
Double point polynomial Dimensionality of secant varieties to
interpolation problems varieties of rank one symmetric tensors

O’t(Xd)

e Symmetric tensors:
eg Sym’(C") ={x®y—-y®x:x,ycC'}CcC"®C"
Sym“(C") = Réf’g"’g i.e. degree-d polynomials

o X; C P(Sym?(C")) the Variety of rank-1 symmetric tensors

o 0.(Xyg) is the t-secant variety to Xy L‘l“?’

AT




Tensors in finite group theory
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Question. Why?
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Tensors in finite group theory

Question. How do we go from groups to tensors? Or the other way around?
Question. Why?

e Computations (isomorphism testing, automorphisms, ...)

e Enumeration (number of groups with given properties, number of groups
with a shared quotient, ...)

e Global techniques for local objects (groups as points of a scheme).

Question. Can | always do that?

Question. [s it restrictive? If so, how restrictive is it?

Finite groups are understood via their simple composition factors and via their
Sylow . The first being classified, we look into the second.




Tensors in finite group theory

Let p be a prime and G, = (g1, &2, g3, h1, h2, h3, z1, 22, z3 | relations) where:




Tensors in finite group theory

Let p be a prime and G, = (g1, &2, g3, h1, h2, h3, z1, 22, z3 | relations) where:

g,P:hfZZle,

e z1,z, z3 central,

e (gi1,8,83) and (h1, ho, h3) abelian,
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o [gs,m] =1, [g5, o] = 21, [g5, 3] = 2"
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e z1,z, z3 central,
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e order p° and
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Tensors in finite group theory

Let p be a prime and G, = (g1, &2, g3, h1, h2, h3, z1, 22, z3 | relations) where:

o gl=h=z=1

e z1,27,23 central, Vi 0

o (g1,8,83) and (hy, ha, h3) abelian, M = 3N

o [g1,m] =2z, [g1,h2] = 22, [g1, hs] = 1 v ”
o g2 m]=2 (g h]=2" [gh]=2

o [, m] =1 [g5,h] =z, [g3, 1] = 2z ".

Then G, is a group of

e order p° and

e exponent p (provided p > 2) det(M) = y1y2 — v + ysy2




Tensors in finite group theory

Let p be a prime and G, = (g1, &2, g3, h1, h2, h3, z1, 22, z3 | relations) where:

° gl.":hj‘.’:zle,
e z1,27,23 central, Vi 0
e (g1,82,8s) and (hy, ho, h3) abelian, M = —¥s N
e [gi,m] =z, [g1, ] = 2, [g1,hs] =1 0 ! Ve
o (g hm]=2,[ghl=2z" g hkl==a
o [gs,m] =1, [g5, o] = 21, [g5, 3] = 2"
Then G, is a group of
e order p° and
e exponent p (provided p > 2) det(M) = y1y3 — yi + ysy2

...and G, is a p-realization of an object defined over Z! (“Globalization”)
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Tensors in finite group theory

Setting det(M) = 0 we get a E in P2

Question. What if | had another curve in the plane?
Question. Do | have a p-group associated to this curve?
Question. Can these groups be isomorphic? (Computations)

Question. What are the isomorphisms of G,? (Enumeration)

|Aut(Gp)| = (polynomial in p) x (non-quasipolynomial).
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Let Xi,..., Xy discrete random with states X; € [nj] = {1,...,n;}. Then we
consider the tensor of joint probabilities: T, ..., = P(X1 = x1,...,Xd = xq).




Tensors in Statistical Models

Let Xi,..., Xy discrete random with states X; € [nj] = {1,...,n;}. Then we
consider the tensor of joint probabilities: T, ..., = P(X1 = x1,...,Xd = xq).

If we assume the variables to be independent then
P(X1 = X1,... ,Xd = Xd) = P(X1 = X1) 000 P(Xd = Xd)7

namely, if we let v; = (P(Xi = 1),..., P(Xi = nj)),




Tensors in Statistical Models

Let Xi,..., Xy discrete random with states X; € [nj] = {1,...,n;}. Then we
consider the tensor of joint probabilities: T, ..., = P(X1 = x1,...,Xd = xq).

If we assume the variables to be independent conditionally to Y € [r] then

P(Xl:)(17,,,7Xd:xd):ZP(Y:y)P(Xl:x17..47Xd:Xd‘Y:y)
=D P(Y=y)P(Xa=x|Y =y) - P(Xg = xq|Y = y).

namely, if we let v =(P(X;=1|Y =y),...,P(Xi = nj|Y = y)), then

T = Z)\yvl(}/) ® V2(Y) R - ® V(SY)
y=1

[ ST L

/
ST /
E
* -k
%
T )(3 X




Tensors in Statistical Models

Algebraic statistical model:
statistical model which depends polynomially on its parameters; namely

a polynomial map ¢ : P — M C An C RV

P = parameter space M = p(P) C Ay = {(PO, ..,pn) ERN poJr}ESN:l}




Tensors in Statistical Models

Algebraic statistical model:

statistical model which depends polynomially on its parameters; namely
a polynomial map ¢ : P — M C An C RV

P = parameter space M = p(P) C Ay = {(P07 ..,pn) ERN p0+}}J£SN:1}

Example: Two throws of a biased coin C. Let Z € [2] count the number of heads.
If P(C=H)=aand p; = P(Z=1), then

a (po, p1, p2) = ((1 — a)?,2a(1 — a), a%).
Then, M = {(po, p1,p2) € Do : p? — 4pop2 = 0}.




Tensors in Statistical Models

Algebraic statistical model:

statistical model which depends polynomially on its parameters; namelt

a polynomial map ¢ : P — M CAxC cV

P=C" M=¢(P) ,QAWC{(PO7---=PN)€CN 2 &2 e

Example: Two throws of a biased coin C. Let Z € [2] count the number of heads.
If P(C=H)=aand p; = P(Z=1), then

a (po, p1, p2) = ((1 — a)?,2a(1 — a), a%).
Then, M = {(po, p1,p2) € Do : p? — 4pop2 = 0}.




Tensors in Statistical Models

Algebraic statistical model:

statistical model which depends polynomially on its parameters; namelt
a polynomial map ¢ : P — M CAxC cV

P=C" M=¢(P) ,QAWC{(PO7---=PN)€CN 2 &2 e

Questions.
e What is the dimension of M?
e What are the defining equations and inequalities of M?

e Given y € M, how ¢~ !(y) look like?
Is the model identifiable, i.e., the general fiber ¢ ~*(y) is a singleton?




Tensors in Statistical Models

Not only discrete random variables and their joint probabilities
can be approached by means of tensors and algebraic statistics.
Gaussian Models

Given a density function f : R” — R for a random vector X = (X1, ..., X»),
its moments are

i i
miy, . iy = / Xt xg (X, ey Xp)dXe e dXn

Example. For n =1, if X ~ N (1, 5?), then
my = W, m2 :/12-'1‘0'27 m3 :/’63+3/“'027 mg :/’L4+6M202+3047"'

In general, moments of Gaussian models are polynomials in the parameters!




Tensors in Statistical Models

Not only discrete random variables and their joint probabilities
can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given X; NN(,u,-, Y), i=1,...,m, and their mixture Y = A1 X1+ ...+ AmXm,
with A1 + ...+ Am = 1, then

@d A1y, Amy oo iy iy o) = (MAo.0, Md—1,1,0--05 - - + 5 M00..-d )

This defines the degree-d moment variety of mixture of Gaussian models.




Tensors in Statistical Models

Not only discrete random variables and their joint probabilities
can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given X; NN(,u,-, Y), i=1,...,m, and their mixture Y = A1 X1+ ...+ AmXm,
with A1 + ...+ Am = 1, then

©d - ()\1, 500y )\m7 5 0 o o [Uifig Z,-, o0 ) — (mdo.“o, mM4g—1,1,0---0y+ - « 5 moo“.d).
This defines the degree-d moment variety of mixture of Gaussian models.

Method of moments (Pearson’s crabs, 1903)

20

Frequency

]

/ “\
© 1‘ \
od —=— 1 \
. . . T T T
058 060 062 064 066 068 070 \\

Ratio breadth of forehead to body length (1000 crabs) 058 060 o062 064 066 06 070

FJHL E // \\
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Tensors in Statistical Models

Not only discrete random variables and their joint probabilities
can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given X; NN(;L,-, Y), i=1,...,m, and their mixture Y = A1 X1+ ...+ AmXm,
with A1 + ...+ Am = 1, then

@d A1y, Amy oo iy iy o) = (MAo.0, Md—1,1,0--05 - - + 5 M00..-d )
This defines the degree-d moment variety of mixture of Gaussian models.

Method of moments (Pearson’s crabs, 1903)

La= TR (8)-
=0 ;S (0))

i (1 1) + yitea (1 4+ s . (10).

y (14 8u?) + 7t (1 +3u') =ps - o wilBAE

it (L gt o Bu) bt (1 G+ B =g - o e (12)

yin (14 1007 + 150%) + iz (1 + 100 + 151 = pis - (13).

24p,) — 28\, + B6ppd — (24pghs — 1002 p.° — (148N, + 203) p*
F— 12Nty = AZ)pt 4 (24PN — Tpath2)py® + 32, Ny py — 24t =0 . (29).




Tensors in Statistical Models

Not only discrete random variables and their joint probabilities
can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given X; NN(,u,-, Y), i=1,...,m, and their mixture Y = A1 X1+ ...+ AmXm,
with A1 + ...+ Am = 1, then

©d - ()\1, 500y )\m7 5 0 o o [Uifig Z,-, o0 ) — (r77d().4.07 mM4g—1,1,0---0y+ - « 5 moon.d).
This defines the degree-d moment variety of mixture of Gaussian models.

Note:
im(¢q) can be looked inside the space of degree-d multivariate polynomials

= . Ui i yin
mg = z : Mig,..in X1 Xn
yeensin

If 6 = pi-(x1,...,xn)T and g;i = (x1,. .., xn)Zi(X1,...,%n) 7, then
M=l + A Ambm, T2 = (2 4 q1) 4+ oA Am(2, + Gm)
3 = M6 + 301q1) + ..+ Am(€3, + 3Cmdm),




Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

e identifiability of points 5

e singularity of points




Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

e identifiability of points 5

e singularity of points

Problem: Checking them for each point is unfeasible...

... but group actions may help!




Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

e identifiability of points 5

e singularity of points
Problem: Checking them for each point is unfeasible...
... but group actions may help!
Toy case: A\’ C" := {A € Mat,x,(C) skew-symm.}

o Gron = {[A| €P(A’C") | rk(A) =2};

o 0/(Gran) := {[A] € P(A*C") | rk(A) < 2r}.




Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

e identifiability of points 5

e singularity of points
Problem: Checking them for each point is unfeasible...
... but group actions may help!
Toy case: A\’ C" := {A € Mat,x,(C) skew-symm.}

o Gron = {[A| €P(A’C") | rk(A) =2};

o 0/(Gran) := {[A] € P(A*C") | rk(A) < 2r}.

The group GL,(C) acts on /\2 C" and leaves each o,(Grz,,) invariant.

GL,(C) also preserves identifiability and singularity




Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

e identifiability of points 5

e singularity of points
Problem: Checking them for each point is unfeasible...
... but group actions may help!
Toy case: A\’ C" := {A € Mat,x,(C) skew-symm.}

o Gron = {[A| €P(A’C") | rk(A) =2};

o 0/(Gran) := {[A] € P(A*C") | rk(A) < 2r}.

The group GL,(C) acts on /\2 C" and leaves each o,(Grz,,) invariant.
GL,(C) also preserves identifiability and singularity

= Enough to check them only on representatives of GL,(C)-orbits.
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Let V¢ be a vector space on which G acts without invariant proper vector
subspaces.
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Tensors under group actions

More in general:

Let G be a "nice” group.

Let V¢ be a vector space on which G acts without invariant proper vector
subspaces.

Let vo € VC be a “special” vector.

o The orbit X := G - [w] is the variety of rank-1 tensors in P(V¢);

e Each o,(X) is union of G-orbits.

Question: That's nice, but why taking care of such spaces/varieties?
Alice: Well, they are cool, that's why!

Bob: For instance, you find them in Quantum Physics (
), in Quantum Chemistry (
), in Quantum Information (
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Tensors are everywhere... also in quantum computing!
What is a quantum algorithm

) ')

Two ingredients: Qubit system + Operations on them

e Qubit states as vectors [¢)) € (C?"), where n is the number of qubits.

e Quantum gates are transformations of qubit states represented as linear
maps (2" x 2" unitary matrices)

U:C¥ 3 |y) —s ) e C¥




Tensors and Quantum Computing

Tensors are everywhere... also in quantum computing!
What is a quantum algorithm

==

Two ingredients: Qubit system + Operations on them

e Qubit states as vectors [¢)) € (C?"), where n is the number of qubits.

e Quantum gates are transformations of qubit states represented as linear
maps (2" x 2" unitary matrices)

U:C* 3 [¢p) — [¢') e C”
Goal: Find the best quantum gate decomposition U = U, ... U, - U;

o S (o —
oI laiml—
;s b {r} & T

N

[}
o7}

#s@@
g
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What if we change our point of view?
Two ingredients: Qubit system +

e Qubit states as order-n tensors [¢) = S°7_ ai(v} ® ... ® v/') € (C*)®"
° as operations on tensors

U: (CH)®" 3 |y — |y') € (C)®"

Entangling gates are
quasi-multilinear maps

{UEMznxzn} E Ue? } W) = (M, ..., Mg) - |4)

k=1

Goal: Find the best quantum gate decomposition can be viewed as find the
rank decomposition of U

U= Mo--oM
k=1
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