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TensorDec Laboratory

Since 2021, the TensorDec Laboratory is a recipient for activities of

research, teaching, mentoring and networking about

algebra, geometry and applications of tensor decompositions
tensordec.maths.unitn.it
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What are tensors?

Tensors are multidimensional boxes for organizing numbers, much like matrices

are boxes for organizing numbers in two ways.

Like matrices, tensors are extremely useful and versatile.

They can be viewed as:

• Tables → Boxes of numbers with a certain order.

• Linear → Multilinear maps.

• Elements of the Matrix → Tensor space.
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Tensors: as boxes of numbers

Multidimensional numerical arrays:

Used to store tons of data

extract meaningful information

Algorithms for Tensor Decompositions (come to our courses/masterclasses):

• Tucker Decomposition: U = (U1,U2,U3)C:
• Rank Decomposition (parafac/candecomp/cpd):

U =
∑r

i=1 ui,1 ⊗ ui,2 ⊗ ui,3:
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Tensors: as multilinear maps

A matrix M ∈W ⊗ V is equivalent to a linear map fM : V →W .

Multilinear maps

MaMu2 : (C2,2)×2 → C2,2((
a11 a12
a21 a22

)
,

(
b11 b12
b21 b22

))
7→

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

(C2,2)⊗3 ∋ MaMu2 = (a11 ⊗ b11 + a12 ⊗ b21) ⊗ c11 + (a11 ⊗ b12 + a12 ⊗ b22) ⊗ c12

+ (a21 ⊗ b11 + a22 ⊗ b21) ⊗ c21 + (a21 ⊗ b12 + a22 ⊗ b22) ⊗ c22

A decomposition of MaMu2 highlights an algorithm.

The rank decomposition highlights the best one. Rank = Complexity →
Complexity Theory.

If the algorithm is encoded in a Quantum Circuit: Complexity = Entanglement

of the state → Quantum Information.
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Tensors: as points in the space

Points of a tensor space: matrix M ∈W ⊗ V , tensor U ∈ V1 ⊗ · · · ⊗ Vd

This perspective allows to study tensors by their common properties, using

global techniques like algebraic-geometric methods (both symbolic and

numerical) to extract shared information among them.

• Mima Stanojkovski: “Tensors in finite group theory”.

• Alessandro Oneto: “Tensors into algebraic statistical models”.

• Elisa Postinghel: “Tensors and polynomial interpolation”.

• Alessandra Bernardi: “Symbolic algorithms for Tensor Decomposition”.

• Edoardo Ballico: “Algebraic Geometry aspects of Tensors”.
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TensorDec Laboratory: studying with us - Mentoring

We mentor theses

Algebra

• Commutative and non commutative algebra, Group theory, Scheme theory.

• Interdisciplinary and Industrial: Quantum physics, Data science.

Algebraic Geometry

• Birational geometry, Computational geometry, Teaching.

• Interdisciplinary and Industrial: Data science, Algebraic statistics.
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TensorDec Laboratory: what we do - Teaching

Courses (Mathematics for Data Science, Q@TN):

• Tensor Decompositions for Big Data Analysis (A. Bernardi)

• Geometry and Topology for Data Analysis (A. Oneto)

We organize annual Masterclasses taught by international guests:
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TensorDec Laboratory: working with us - Networking

PhD opportunities (more than the standard call):

• Industrial PhD (just closed)

• Transdisciplinary Doctoral Program Q@TN

• Horizon: Marie Curie Double Degree (IT & abroad):
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TensorDec Laboratory: working with us - Networking

Post Doc opportunities: We are members of the

Italian Network for Applied and Birational Algebraic Geometry (INABAG)
 

Br

Er

SEBA

Em

MEEKATHARRA

https://sites.google.com/unitn.it/inabag/
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Tensors and polynomial interpolation

Let Rd := R[x1, x2]d be the space of polynomials of degree ≤ d .

Let S = {p1, . . . , ps} be a set of distinct points in R2.

Polynomial interpolation problems:

Gauss Jordan

• Simple points:

Ld(S) = {f ∈ R : f (pi ) = 0, ∀i = 1, . . . , s} ⊆ R

• Double points:

Ld(2S) = {F ∈ Rd : f (pi ) =
∂

∂x1
f (pj) =

∂
∂x2

f (pj) = 0, ∀j = 1, . . . , s} ⊆ R

• Multiple points:

Ld(mS) = . . .
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Tensors and polynomial interpolation

Rd := R[x1, . . . , xn]d
S = {p1, . . . , ps} ⊂ Rn.

↓ passing to algebraically closed fields

RC,d := C[x1, . . . , xn]d
S = {p1, . . . , ps} ⊂ Cn.

↓ homogenising/projectivising

Rhomog
C,d := C[x0, x1 . . . , xn]d

S = {p1, . . . , ps} ⊂ Pn
C.

 

f (x1, x2) =
∑
i,j

ai,jx
i
1x

j
2

↓

F (x0, x1, x2) =
∑
i,j

ai,jx
d−i−j
0 x i

1x
j
2

• Double point polynomial interpolation:

Ld(2S) = {F ∈ Rhomog
C,d : ∂

∂xj
F (pj) = 0, ∀i = 1, . . . , s,∀j = 0 . . . , n}
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Tensors and polynomial interpolation

Slogan

Double point polynomial

interpolation problems
←→

Dimensionality of secant varieties to

varieties of rank one symmetric tensors

σt(Xd)

• Symmetric tensors:

e.g. Sym2(Cn) = {x ⊗ y − y ⊗ x : x , y ∈ Cn} ⊂ Cn ⊗ Cn

Symd(Cn) = Rhomog
C,d i.e. degree-d polynomials

• Xd ⊆ P(Symd(Cn)) the Variety of rank-1 symmetric tensors

• σt(Xd) is the t-secant variety to Xd
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Tensors in finite group theory

Question. How do we go from groups to tensors? Or the other way around?

Question. Why?

• Computations (isomorphism testing, automorphisms, . . . )

• Enumeration (number of groups with given properties, number of groups

with a shared quotient, . . . )

• Global techniques for local objects (groups as points of a scheme).

Question. Can I always do that?

Question. Is it restrictive? If so, how restrictive is it?

Finite groups are understood via their simple composition factors and via their

Sylow p-subgroups. The first being classified, we look into the second.
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Tensors in finite group theory

Let p be a prime and Gp = ⟨g1, g2, g3, h1, h2, h3, z1, z2, z3 | relations⟩ where:

• gp
i = hp

j = zpk = 1,

• z1, z2, z3 central,

• ⟨g1, g2, g3⟩ and ⟨h1, h2, h3⟩ abelian,

• [g1, h1] = z1, [g1, h2] = z2, [g1, h3] = 1

• [g2, h1] = z2, [g2, h2] = z−1
3 , [g2, h3] = z1

• [g3, h1] = 1, [g3, h2] = z1, [g3, h3] = z−1
3 .

Then Gp is a group of

• order p9 and

• exponent p (provided p > 2)

M =

y1 y2 0

y2 −y3 y1

0 y1 −y3



det(M) = y1y
2
3 − y 3

1 + y3y
2
2

. . . and Gp is a p-realization of an object defined over Z! (“Globalization”)
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Tensors in finite group theory

Setting det(M) = 0 we get a curve E in P2!

Question. What if I had another curve in the plane?

Question. Do I have a p-group associated to this curve?

Question. Can these groups be isomorphic? (Computations)

Question. What are the isomorphisms of Gp? (Enumeration)

|Aut(Gp)| = (polynomial in p)× (non-quasipolynomial).
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Tensors in Statistical Models

Let X1, . . . ,Xd discrete random with states Xi ∈ [ni ] = {1, . . . , ni}. Then we

consider the tensor of joint probabilities: Tx1,...,xd = P(X1 = x1, . . . ,Xd = xd).
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Let X1, . . . ,Xd discrete random with states Xi ∈ [ni ] = {1, . . . , ni}. Then we

consider the tensor of joint probabilities: Tx1,...,xd = P(X1 = x1, . . . ,Xd = xd).

If we assume the variables to be independent then

P(X1 = x1, . . . ,Xd = xd) = P(X1 = x1) · · ·P(Xd = xd),

namely, if we let vi = (P(Xi = 1), . . . ,P(Xi = ni )),

T = v1 ⊗ v2 ⊗ · · · ⊗ vd
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Let X1, . . . ,Xd discrete random with states Xi ∈ [ni ] = {1, . . . , ni}. Then we

consider the tensor of joint probabilities: Tx1,...,xd = P(X1 = x1, . . . ,Xd = xd).

If we assume the variables to be independent conditionally to Y ∈ [r ] then

P(X1 = x1, . . . ,Xd = xd ) =
r∑

y=1

P(Y = y)P(X1 = x1, . . . ,Xd = xd |Y = y)

=
r∑

y=1

P(Y = y)P(X1 = x1|Y = y) · · ·P(Xd = xd |Y = y).

namely, if we let v
(y)
i = (P(Xi = 1|Y = y), . . . ,P(Xi = ni |Y = y)), then

T =
r∑

y=1

λyv
(y)
1 ⊗ v

(y)
2 ⊗ · · · ⊗ v

(y)
d
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Tensors in Statistical Models

Algebraic statistical model:

statistical model which depends polynomially on its parameters; namely

a polynomial map φ : P −→M ⊂ ∆N ⊂ RN

P = parameter space M = φ(P) ⊂ ∆N =
{
(p0, . . . , pN) ∈ RN : p0+...+pN=1

pi≥0

}
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P = parameter space M = φ(P) ⊂ ∆N =
{
(p0, . . . , pN) ∈ RN : p0+...+pN=1

pi≥0

}

Example: Two throws of a biased coin C . Let Z ∈ [2] count the number of heads.

If P(C = H) = a and pi = P(Z = i), then

a 7→ (p0, p1, p2) = ((1− a)2, 2a(1− a), a2).

Then, M = {(p0, p1, p2) ∈ ∆2 : p21 − 4p0p2 = 0}.
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Tensors in Statistical Models

Algebraic statistical model:

statistical model which depends polynomially on its parameters; namelt

a polynomial map φ : P −→M ���⊂ ∆N ⊂ CN

P = Cn M = φ(P) ���⊂ ∆N ⊂
{
(p0, . . . , pN) ∈ CN : (((((p0+...+pN=1

��pi≥0

}

Questions.

• What is the dimension ofM?

• What are the defining equations and inequalities ofM?

• Given y ∈M, how φ−1(y) look like?

Is the model identifiable, i.e., the general fiber φ−1(y) is a singleton?
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Tensors in Statistical Models

Not only discrete random variables and their joint probabilities

can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given a density function f : Rn → R for a random vector X = (X1, . . . ,Xn),

its moments are

mi1,...,in =

∫
Rn

x i1
1 · · · x

in
n f (x1, . . . , xn)dx1 · · · dxn

Example. For n = 1, if X ∼ N (µ, σ2), then

m1 = µ, m2 = µ2 + σ2, m3 = µ3 + 3µσ2, m4 = µ4 + 6µ2σ2 + 3σ4, . . .

In general, moments of Gaussian models are polynomials in the parameters!
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Tensors in Statistical Models

Not only discrete random variables and their joint probabilities

can be approached by means of tensors and algebraic statistics.

Gaussian Models

Given Xi ∼ N (µi ,Σ), i = 1, . . . ,m, and their mixture Y = λ1X1 + . . .+ λmXm,

with λ1 + . . .+ λm = 1, then

φd : (λ1, . . . , λm, . . . , µi ,Σi , . . .) 7→ (md0···0,md−1,1,0···0, . . . ,m00···d).

This defines the degree-d moment variety of mixture of Gaussian models.
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Method of moments (Pearson’s crabs, 1903)
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This defines the degree-d moment variety of mixture of Gaussian models.

Note:

im(φd ) can be looked inside the space of degree-d multivariate polynomials

m̄d =
∑

i1,...,in

mi1,...,inx
i1
1 · · · x inn

If ℓi = µi · (x1, . . . , xn)T and qi = (x1, . . . , xn)Σi (x1, . . . , xn)
T , then

m̄1 = λ1ℓ1 + . . .+ λmℓm, m̄2 = λ1(ℓ
2
1 + q1) + . . .+ λm(ℓ

2
m + qm)

m̄3 = λ1(ℓ
3
1 + 3ℓ1q1) + . . .+ λm(ℓ

3
m + 3ℓmqm), · · ·
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Tensors under group actions

Main aim: study geometric properties of secant varieties, e.g.

• identifiability of points = uniqueness in recovering data ;

• singularity of points = unfeasibility in computations .

Problem: Checking them for each point is unfeasible...

... but group actions may help!

Toy case:
∧2 Cn := {A ∈ Matn×n(C) skew-symm.}

• Gr2,n :=
{
[A] ∈ P

(∧2 Cn
)
| rk(A) = 2

}
;

• σr (Gr2,n) :=
{
[A] ∈ P

(∧2 Cn
)
| rk(A) ≤ 2r

}
.

The group GLn(C) acts on
∧2 Cn and leaves each σr (Gr2,n) invariant.

GLn(C) also preserves identifiability and singularity

=⇒ Enough to check them only on representatives of GLn(C)–orbits.
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Tensors under group actions

More in general:

Let G be a “nice” group. = GLn(C)
Let V G be a vector space on which G acts without invariant proper vector

subspaces. =
∧d Cn space of skew-symmetric tensors in

∧d Cn

Let v0 ∈ V G be a “special” vector. = e1 ∧ . . . ∧ ed

• The orbit X := G · [v0] is the variety of rank–1 tensors in P(V G );

= Grd,n Grassmannian = rank–1 skew-symm. tensors

• Each σr (X ) is union of G–orbits.

Question: That’s nice, but why taking care of such spaces/varieties?

Alice: Well, they are cool, that’s why!

Bob: For instance, you find them in Quantum Physics (Grd,n as “simple”

fermions), in Quantum Chemistry (Grd,n as quantum states of d electrons in n

orbitals), in Quantum Information (“isotropic” Grassmannians parametrize

abelian groups of observables in the Clifford group), ...
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Tensors and Quantum Computing

Tensors are everywhere... also in quantum computing!

What is a quantum algorithm

Two ingredients: Qubit system + Operations on them

• Qubit states as vectors |ψ⟩ ∈ (C2n ), where n is the number of qubits.

• Quantum gates are transformations of qubit states represented as linear

maps (2n × 2n unitary matrices)

U : C2n ∋ |ψ⟩ 7−→ |ψ′⟩ ∈ C2n

Goal: Find the best quantum gate decomposition U = UL . . .U2 · U1
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Tensors and Quantum Computing

What if we change our point of view?

Two ingredients: Qubit system + Operations on them

• Qubit states as order-n tensors |ψ⟩ =
∑r

i=1 αi (v
1
i ⊗ ...⊗ vn

i ) ∈ (C2)⊗n

• Quantum gates as operations on tensors

U : (C2)⊗n ∋ |ψ⟩ 7−→ |ψ′⟩ ∈ (C2)⊗n

C2n

U ∈ M2n×2n

(C2)⊗n

U ∈ ?

Entangling gates are

quasi-multilinear maps

|ψ′⟩ =
s∑

k=1

(M1
k , . . . ,M

n
k ) · |ψ⟩

Goal: Find the best quantum gate decomposition can be viewed as find the

rank decomposition of U

U =
s∑

k=1

M1
k ⊗ · · · ⊗Mn

k

.
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