

Why do we like to shatter tensors? TensorDay 2024 - TensorDec @ UniTN

Daniele Taufer KU Leuven December 9, 2024.

Master degree

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Famous for...

Master degree

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

thyssenkrupp

Master degree

Famous for...

Inimana

Master degree

My Ph.D.

Supervisor: Massimiliano Sala

- Elliptic curves and loops
- ECC and DLP-based protocols
- First-degree prime ideals
- Symmetric tensor decomposition

My Ph.D. - Symmetric tensors

Symmetric Tensor Decomposition

Daniele Taufer supervised by Alessandra Bernardi

University of Trento

November 21, 2017

D. Taufer, A. Bernardi, (UniTN) Symmetric Tensor Decompositi

First postdoc

Saarbrücken

Famous for ...

founded by ERC-669891 (Antoine Joux)

Second postdoc (current)

Leuven

Famous for...

Second postdoc (current)

Leuven

Famous for...

Introducing: tensors*

An order-*d* tensor over *V* is an element of $\underbrace{V \otimes V \otimes \cdots \otimes V}_{d \text{ times}}$.

Simple tensors

Linearity

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w.$$

Rank-1 tensors*

$$(e_1 + 2e_2)^{\otimes 3} = (e_1 + 2e_2) \otimes (e_1 + 2e_2) \otimes (e_1 + 2e_2)$$
$$= e_{1,1,1} + 2e_{1,1,2} + 2e_{1,2,1} + 2e_{2,1,1}$$
$$+ 4e_{1,2,2} + 4e_{2,1,2} + 4e_{2,2,1} + 8e_{2,2,2},$$

where

$$e_{i,j,k} = e_i \otimes e_j \otimes e_k.$$

8 Why do we like to shatter tensors?

KU LEUVEN

Simple tensors

Linearity

$$(\mathbf{v_1} + \mathbf{v_2}) \otimes w = \mathbf{v_1} \otimes w + \mathbf{v_2} \otimes w.$$

Waring decomposition problem*

 $e_{1,1,1} + 2e_{1,1,2} + 2e_{1,2,1} + 2e_{2,1,1} + 4e_{1,2,2} + 4e_{2,1,2} + 4e_{2,2,1} + 8e_{2,2,2}$

Waring decomposition problem*

 $e_{1,1,1} + 2e_{1,1,2} + 2e_{1,2,1} + 2e_{2,1,1} + 4e_{1,2,2} + 4e_{2,1,2} + 4e_{2,2,1} + 8e_{2,2,2}$

Waring decomposition

Writing a tensor as a sum of the **minimal** number of rank-1 tensors. Such a minimal number is referred to as its *Waring rank*.

Symmetric version

Symmetric tensors

A tensor is called *symmetric* if it is invariant under (basis) index permutations.

 $e_{1,1,1} + 2e_{1,1,2} + 2e_{1,2,1} + 2e_{2,1,1} + 4e_{1,2,2} + 4e_{2,1,2} + 4e_{2,2,1} + 8e_{2,2,2}$

Same coefficients: $e_{i,j,k}$, $e_{i,k,j}$, $e_{j,i,k}$, $e_{j,k,i}$, $e_{k,i,j}$, $e_{k,j,i}$

Symmetric version

Symmetric tensors

A tensor is called *symmetric* if it is invariant under (basis) index permutations.

$$\underbrace{\underbrace{e_{1,1,1}}_{x_1^3} + \underbrace{2e_{1,1,2} + 2e_{1,2,1} + 2e_{2,1,1}}_{6x_1^2x_2} + \underbrace{4e_{1,2,2} + 4e_{2,1,2} + 4e_{2,2,1}}_{12x_1x_2^2} + \underbrace{8e_{2,2,2}}_{8x_2^3}$$
Same coefficients:
$$\underbrace{e_{i,j,k}, \ e_{i,k,j}, \ e_{j,i,k}, \ e_{j,k,i}, \ e_{k,i,j}, \ e_{k,j,i}}_{x_ix_jx_k}$$

Symmetric version

Symmetric Waring decomposition problem

Write a homogeneous degree-d polynomial $F \in \Bbbk[x_0, \ldots, x_n]$ as a sum of the minimal number of d-powers of linear forms.

Theorem	[Alexander–Hirschowitz]	
---------	-------------------------	--

If F is generic, its expected rank is $\left[\frac{\binom{n+d}{d}}{n+1}\right]$, except for:

(d,n)	rk(F)	Instead of
(2, n)	n+1	$\left\lceil \frac{n+2}{2} \right\rceil$
(3, 4)	8	7
(4, 2)	6	5
(4, 3)	10	9
(4, 4)	15	14

Apolarity

Annihilator

Let ${\cal F}$ be an homogeneous polynomial. Its annihilator is the homogeneous ideal

$$\mathsf{Ann}(F) = \{ G \in \Bbbk[\partial_0, \dots, \partial_n] \mid G \circ F = 0 \}.$$

Apolarity Lemma

The following are equivalent:

$$\blacktriangleright F = L_1^d + \dots + L_s^d,$$

• there is an ideal $I \subset Ann(F)$ defining s simple points in $\mathbb{P}^n(\mathbb{k})$.

Why do we care?

Top-level reason

A natural, insanely difficult, algebraic problem!

High-level reasons

- 1 Optimization and efficiency
- 2 Revealing hidden information
- 3 Measuring complexity

Different flavors

Commutative and computational algebra, algebraic geometry, combinatorics, numerical analysis, ...

1. Optimization and efficiency

Example: storage cost

$$F = 3x_0^4 + 8x_0^3x_1 + 4x_0^3x_2 + 12x_0^2x_1^2 + 24x_0^2x_1x_2 + 30x_0^2x_2^2 + 8x_0x_1^3 + 24x_0x_1^2x_2 + 48x_0x_1x_2^2 + 28x_0x_2^3 + 2x_1^4 + 8x_1^3x_2 + 24x_1^2x_2^2 + 32x_1x_2^3 + 17x_2^4.$$

We need $\binom{4+2}{2} = \mathbf{15}$ coefficients to store its monomial representation. But if one knows that

$$F = (x_0 + x_1)^4 + (x_0 - x_2)^4 + (x_0 + x_1 + 2x_2)^4,$$

then 9 coefficients are enough.

Sometimes we are happy with low-rank approximations!

2. Revealing hidden information

If a tensor arises from a physical system, it is probably not random.

The pieces of a minimal decomposition usually represent intrinsic properties/objects that play a special role in the considered system.

2. Revealing hidden information

Example: roots of univariate cubics

• Let
$$f \in \Bbbk[x]$$
 be a random degree-3 polynomial.

► Homogenize it: $F \in \Bbbk[x, y]$.

By A-H with (d, n) = (3, 1), we know that the expected rank is 2:

$$F = L_1^3 + L_2^3.$$

• The solutions to F = 0 are

$$L_1 = -\sqrt[3]{1} \cdot L_2$$

3. Measuring complexity

Multiplying (linear) polynomials

$$(a_0 + a_1 x)(b_0 + b_1 x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + a_1 b_1 x^2.$$

We can do it with 4 k-multiplications. Can we do better?

$$F = a_0 b_0 c_0 + (a_0 b_1 + a_1 b_0) c_1 + a_1 b_1 c_2.$$

3. Measuring complexity

Multiplying (linear) polynomials

$$(a_0 + a_1 x)(b_0 + b_1 x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + a_1 b_1 x^2.$$

We can do it with 4 k-multiplications. Can we do better?

$$F = a_0b_0c_0 + (a_0b_1 + a_1b_0)c_1 + a_1b_1c_2.$$

= $a_0b_0(c_0 - c_1) + (a_0 + a_1)(b_0 + b_1)c_1 + a_1b_1(-c_1 + c_2).$
 \checkmark "Karatsuba decomposition"

3. Measuring complexity

Multiplying (linear) polynomials

$$(a_0 + a_1 x)(b_0 + b_1 x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + a_1 b_1 x^2.$$

We can do it with 4 k-multiplications. Can we do better? YES!

With 3 k-multiplications

$$= a_0b_0 + (-a_0b_0 + (a_0 + a_1)(b_0 + b_1) - a_1b_1)x + a_1b_1x^2$$

 \rightsquigarrow We should look at more sophisticated decompositions!

Generalized additive decomposition

Generalized additive decomposition

16 Why do we like to shatter tensors?

Generalized additive decomposition

$$F = \sum_{i=1}^{s} L_i^{d-k_i} G_i.$$

16 Why do we like to shatter tensors?

Thanks for your attention!

daniele.taufer@gmail.com

A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, A. Oneto, The Hitchhiker Guide to: Secant Varieties and Tensor Decomposition, Mathematics 6(12), 314, 2018.