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About me

Dr. Nick Vannieuwenhoven

Obtained PhD in 2015 at KU Leuven on the tensor rank decompo-
sition. Spent 7 months with G. Ottaviani in Florence, Italy.

From 2015–2021 I was a FWO Postdoctoral Fellow on the geom-
etry of tensor decompositions. Spent 6 months with C. Beltrán in
Santander, Spain.

In 2019 became Assistant Professor of Numerical methods and data
science at KU Leuven. Spent 18 months locked down in Leuven.

Research topics:

Tensor and their decompositions,

applied geometry of tensor decompositions,

numerical analysis, and

mathematics of data science.
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About you

I assume there is some diversity in background:

pure mathematics?

applied mathematics / mathematical engineering?

computer science?

data science / machine learning / artificial intelligence?

other engineering?
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About the lectures

The plan of the lectures is as follows:

Date Contents

Monday 8/11 11:30 Introduction
Wednesday 10/11 14:30 Tucker decomposition
Friday 12/11 9:30 Tensor trains decomposition
Monday 15/11 11:30 Tensor rank decomposition I
Wednesday 17/11 14:30 Tensor rank decomposition II
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About the learning goals

In this course, we will begin to formulate answers to the following questions:

1 What’s the deal with matrix decompositions?

2 What are tensors?

3 What’s this tensor network notation?

4 What is a Tucker / tensor trains / tensor rank decomposition?

5 What can you do with these decompositions? What are the use cases?

6 How do you compute these decompositions?

7 How can you approximate a tensor by a low-rank decomposition?

What I cannot treat unfortunately are more global questions about the geometry of the sets of
tensors with certain decompositions.
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Numerical mathematics

The focus is on numerical computing, as opposed to symbolic computing.

In numerical computing computations are carried out using (IEEE standard double-precision)
floating-point arithmetic. In this system, the only representable numbers are

±
(
b12−1 + b22−2 + · · ·+ bn2−n

)
· 2k ⊂ Q,

where bi ∈ {0, 1}, n = 53 and −1021 ≤ k ≤ 1024.

Every computation in this system resulting in a non-representable number is replaced by the
nearest representable number. For the elementary operations ◦ ∈ {+,−, ·, /}, we have

fl(a ◦ b) = (a ◦ b)(1 + δ), where |δ| ≤ 1.1 · 10−16.

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 9 / 59



The main advantage of floating-point over symbolic computations is their much greater
speed and fixed memory consumption. However, since these computations are not exact, a
different mindset is required.

In numerical mathematics the goal is twofold:

1 Find an approximation of the exact quantity of interest; and

2 quantify how close this approximation is.
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Software tools

There are two main toolboxes in Matlab for working with tensors:

1 Tensor Toolbox v3.2, developed by Kolda et al.

2 Tensorlab v3, developed by De Lathauwer et al.

The Tensor Toolbox supports the three main decompositions we will study in this Masterclass.
Tensorlab has great support for the tensor rank decomposition.
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An explosion of multidimensional data

(1) Solutions of (parameterized) partial differential equations

t = 0 t = 1
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(2) hyperspectral imaging

band 5 band 25 band 50 band 75 band 100
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(3) fluorescence spectroscopy
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(4) MRI data
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(5) EEG data in the time-frequency domain

channel 1 channel 2 channel 3 channel 4 channel 5
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The main challenges associated with such data are:

data quality (incomplete, noise, outliers),

interpretability,

visualization,

analysis processing costs (time and space), and

storage costs.

For data that varies in only 2 directions, numerical linear algebra offers powerful, efficient,
and practical (linear) tools for

data cleaning,

data analysis, and

dimensionality reduction.
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Linear algebra deals with ...

d = 0 scalar a =

d = 1 vector a =

d = 2 matrix A =

d ≥ 3 tensor A =
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Multilinear algebra deals with ...

d = 0 scalar a =

d = 1 vector a =

d = 2 matrix A =

d ≥ 3 tensor A =

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 20 / 59



Numerical multilinear algebra

This course will introduce you to the field of numerical multilinear algebra, which studies:

the elementary multilinear objects, namely tensors;

factorizations or decompositions of tensors;

algorithms involving tensors;

sensitivity of tensor decomposition; and

applications involving tensors.
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There is a natural symbiosis between (multi)linear algebra:

Multilinear algebra Linear algebra

is extended to

reduces to

Hence, unconsciously, the developments in numerical multilinear algebra have been shaped by
the same dominant ideas in numerical linear algebra, namely

1 decompositions or factorizations; and

2 exploiting structure.
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1. Matrix decompositions

Stewart (2000) lists some benefits of the decompositional approach to matrix
computations:

A decomposition may solve many problems.

A decomposition, which is generally expensive to compute, might be reused to solve new
problems involving the original data.

Many decompositions can be updated, sometimes with great savings in computation.

Given the success of framework in the context of matrices, the present focus on tensor
decompositions is a logical extension.
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Some examples of matrix decompositions are:

singular value decomposition

eigenvalue decompositions

Schur decompositions

Jordan decompositions

polar decompositions

CS decompositions

QR-decompositions

LU-decompositions

interpolative decompositions

A = USV T

A = VDV−1

A = QUQ−1

A = PJP−1

A = UP

A = CS

A = QR

A = LU

A = CUR

In fact, many of these are special cases of generalized Cartan decompositions, see Edelman
and Jeong (2021).
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2. Exploiting structure

A second main concept is exploiting useful matrix structures, yielding more efficient and
often more stable algorithms.

For example, discretizations (finite elements, differences or volumes) of partial differential
equations (PDEs) result in huge linear systems with millions of unknowns. Storing such a
system as a dense matrix would have a tremendous cost: a dense 106 × 106 matrix requires
8 · 1012 bytes or 8000 gigabytes of memory!1 Fortunately, discretizations of PDEs result in
sparse linear systems, wherein most coefficients are zero.

1That’s about 30 typical 2017 laptops worth of storage.
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Some well-known examples of exploitable matrix structures are:

Symmetry

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 26 / 59



Some well-known examples of exploitable matrix structures are:

Toeplitz
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Some well-known examples of exploitable matrix structures are:

Hankel
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Some well-known examples of exploitable matrix structures are:

Sparsity
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Some well-known examples of exploitable matrix structures are:

Banded
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Some well-known examples of exploitable matrix structures are:

Low rank
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Low-rank decomposition

Decomposition Structure

Low-rank
matrices
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A matrix M has a low-rank structure if it admits a decomposition as

M = ABT =
r∑

i=1

aib
T
i :=

r∑
i=1

ai ⊗ bi

with r “small” relative to m and n, and where

A =
[
a1 · · · ar

]
∈ Rm×r and B =

[
b1 · · · br

]
∈ Rn×r

each have linearly independent columns.
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The singular value decomposition

Arguably the most fundamental rank-revealing matrix decomposition is the singular value
decomposition (SVD). It says that every matrix can be represented as a diagonal matrix in
suitable bases.

The compact SVD of M ∈ Rm×n is a decomposition

M = UΣV T =
r∑

i=1

σiui ⊗ vi with UTU = I and V TV = I ,

where r is the rank of M, U and V have orthogonal columns, and

Σ = diag(σ1, σ2, . . . , σr ) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The number of nonzero singular values equals the rank of M.
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The solution to the best rank-r approximation problem is readily obtained from the SVD.

Theorem (Schmidt, Mirsky, and Eckart and Young)

Let A ∈ Rm×n have the SVD A = UΣV T with Σ = diag(σ1, . . . , σr ) and σ1 ≥ . . . ≥ σr > 0.
Then,

min
rank(B)≤k

‖A− B‖F =

∥∥∥∥∥A−
k∑

i=1

σiui ⊗ vi

∥∥∥∥∥
F

=

√√√√ r∑
i=k+1

σ2i

and

min
rank(B)≤k

‖A− B‖2 =

∥∥∥∥∥A−
k∑

i=1

σiui ⊗ vi

∥∥∥∥∥
2

= σk+1

for all 1 ≤ k ≤ r .
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Rank 1
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Rank 2
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Rank 3
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Rank 5
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Rank 10
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Rank 25
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Rank 50
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Rank 100
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Rank 200
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Computing the truncated SVD

The standard numerically stable method for computing a truncated SVD consists of

1 computing the compact SVD, and

2 truncating it by keeping only the first r terms.

The Golub–Kahan method for computing an SVD of an m × n matrix A with m ≥ n has
computational complexity

Cmn2 = O(mn2)

This roughly means that the time for computing a rank-r truncated SVD of an n× n matrix is

n 1 000 2 000 4 000 8 000 16 000 32 000
time 00:00:01 00:00:08 00:01:04 00:08:32 01:08:16 546:08:00
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For data analysis applications, full precision is rarely required. Cheap approximations of the
rank-r truncated SVD were developed based on

simple randomized range finders,

subspace iteration range finders,

range finders with structured matrices, and

adaptive cross approximation,

interpolatory decomposition.

An overview of how to find structure with randomness was presented by Halko, Martinsson,
and Tropp (2011).
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→ I. Randomized range finder

The idea of a randomized range finder is as follows.

Assume that an m × n matrix A has rank r and its compact SVD is A = USV T . Then, for
every matrix X :

AX = U(SV TX ) ⊂ span(U)

Moreover, if X is a random Gaussian n × R matrix with r ′ ≥ r , then

span(AX ) = span(U)

with probability 1.
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Therefore, the following randomized algorithm produces an SVD of A:

1 choose a random X ∈ Rm×r ′ and set A′ = AX

2 compute a rank-r truncated SVD A′ ≈ QS ′W T

3 project onto the range of Q: C = QTA

4 compute the SVD of C = U ′SV T

5 set A = (QU ′)SV T

The computational complexity of this algorithm is

O
(
mnr ′︸︷︷︸
step 1

+m(r ′)2︸ ︷︷ ︸
step 2

+ mnr︸︷︷︸
step 3

+ nr2︸︷︷︸
step 4

+mr2 + mnr︸ ︷︷ ︸
step 5

)
= O(mnr ′)� O(mn2)
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A simple Julia implementation may look as follows:

using LinearAlgebra

""" Compute the column span of A using a randomized range finder. """

function colspan_rrf(A :: Matrix, tr :: Integer)

R = randn(size(A,2), tr+10)

comprFact = svd(A*R)

U = Matrix(comprFact.U[:,1:tr])

return U

end

""" Computes a rank-r truncated SVD. """

function truncated_svd(A :: Matrix, rk :: Integer, rf = colspan_rrf)

Q = rf(A, rk)

C = transpose(Q)*A

svdF = svd(C)

return (Q*svdF.U, svdF.S, svdF.V)

end
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→ II. Adaptive cross approximation

In adaptive cross approximation (Goreinov, Tyrtyshnikov and Zamarashkin, 1997), an
interpolating rank-1 approximation of A ∈ Rm×n is given by the “skeleton”

S1 = A:,j∗a
−1
i∗,j∗Ai∗,:

where (i∗, j∗) is the index of the largest element (in absolute value) of A.

Then, we could repeat this idea, computing a rank-1 interpolating approximation of the
residual A−S1, resulting in S2. Repeat this process r times to obtain the rank-r approximation

A ≈ S1 + S2 + · · ·+ Sr .

Naturally, finding the optimal (i∗, j∗) would require mn operations. This index finding is
approximated by, e.g., the rook pivoting strategy.
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Let’s compare the standard rank-r truncated SVD (SVD) with a method based on the simple
randomized range finder (RRF) and another one based on the interpolatory decomposition
(ID). We use an exact rank-10 matrix of size n × n and truncate it to r = 10.
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Application: analysis of energy output of solar panels

The rank-r truncated SVD is a key tool in data analysis because data-generating
processes in applications are structured.

For example:
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Data from several applications tends to be of low rank (Udell and Townsend, 2019).

Truncated SVDs, enable us to

1 analyze the most important features of the data (exploratory data analysis), and

2 perform noise reduction,

3 reduce the dimensionality.
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Consider the following 23× 30 data matrix that I collected from our photovoltaic solar
panels. It records the hourly energy output in kWh over the course of June 2021.
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The singular values of the (normalized) matrix show a quite typical decay for many data
arising in applications:

With a rank-1 approximation, 90% of the data is explained!
With a rank-10 approximation 99% of the data is explained!
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1. Exploratory data analysis

The dominant left singular vectors scaled by the corresponding singular values show the
dominant behavior of the data as the hour of the day varies:

A rank-5 approximation leaves only 4% of the data unexplained.
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2. Noise reduction

By taking a truncated SVD, the nondominant features of the data are removed. This has the
effect of reducing noise (usually of high frequency and unstructured).

Rank 1 True
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2. Noise reduction

By taking a truncated SVD, the nondominant features of the data are removed. This has the
effect of reducing noise (usually of high frequency and unstructured).

Rank 5 True
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Note that the residual approximation error does not look like it contains additional structured
information:
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3. Dimensionality reduction

Storing a rank-r truncated SVD (U,S ,V ) of an m × n matrix A = USV T reduces storage
from mn to (m + n)r in practice.

In our case, a compression factor of

30 · 23

4(30 + 23)
=

690

212
≈ 3.25
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Generalizing the SVD

Linear algebra Multilinear algebra
is extended to

truncated SVD ?

Several tensor decompositions emerged from the effort of trying to generalize the truncated
SVD, each with their own use cases:

1 the tensor rank decomposition (Hitchcock, 1927),

2 the Tucker decomposition (Tucker, 1963), and

3 the tensor trains decomposition (Fannes, Nachtergaele, and Werner, 1992).
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Compact singular value decomposition:

= = + · · ·+
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Compact singular value decomposition:

= = + · · ·+

Tucker decomposition

=
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Compact singular value decomposition:

= = + · · ·+

Tensor trains decomposition

= · · ·
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Compact singular value decomposition:

= = + · · ·+

Tensor rank decomposition

= + + · · ·+
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Conclusions

This is random data ... and this is real data.
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