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Overview

© Introduction (5')
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Singular value decomposition

", [

Linear algebra

is extended to

Multilinear algebra - -

Tucker decomposition
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l.- - One interpretation of the compact SVD USV' T of a rank-r
matrix A € k™" is that it identifies

@ an orthonormal basis U of the column space of A,

@ an orthonormal basis V of the row space of A, and

@ the coordinates S of A relative to the bases U and
V.

This interpretation generalizes straightforwardly to ten-
sors. The resulting orthogonal Tucker decomposition
can be used for dimensionality reduction to the smaller
blue core tensor.

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications



i ™

SHOULE | ASk 7 MAYEE | SHOULD WAIT
WUAT IF HE ALREADY UNTIL AFTER THE
AHSWERED (TP 1S T A TaLk, Do | BEALLY
DuB QUESTION? AM | HEED TO ASk T M

CAR | TAKE
THE LEFT OVER

&G To EMBARRASS PUBLIC? BUT WHAT IF
MYSELF M FROMT oF I'M HOT THE oMLY oHE?

L\IELERY-'D:’E;-‘\J-
o

ey

£ JORGE CWAM B 2013

Wi . PHRDCOMICS, COM

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 7/66



Overview

© Muiltilinear algebra* (40')
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Tensor product

The tensor product of two vector spaces V and W with respective bases {vi,...,vn} and
{wi,...,wp} is defined as the vector space

V@ W :=span(vi ®Wi,...,V1 @ Wp, ..., Vy @ W1,...,Vym Q@ Wp),

where the tensor product of vectors ® is bilinear:

(a+b)®c=a®c+b®c,
a®(b+c)=a®@b+a®c,
(rd) @b =a(a®b) =a® (ab).
It can be shown that dmV ® W =dim V - dim W.
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Every tensor 7 € V ® W that is of the form
T=a®b
can also be expressed as a linear combination of the foregoing vectors v; ® w;. Indeed, if
a=avi+avo+---+amvm and b= bywi + bowy + - + apw,

then we have

m m m n
E:aw ®b:§:@NJ®b=§:aw® 2:@%
i=1 i=1 i=1 J=1

n

_ZZ ajvi) @ (bjwj) = ZZ(aibj)Vi®Wj

i=1 j=1 i=1 j=1
In other words, T = a ® b can be represented in coordinates by a rank-1 matrix ab” !
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The tensor product generalizes to an arbitrary number of vector spaces Vi, ...
has basis {vf,...,vk }, then

Vi@ Vy:= Span({@)(v}p e 7Vd)}n17~~-7”d )7

ig )it ig=1
where the tensor product ®(-,...,-) can be defined as

®@l..,af) =alw@e (@@ Twad)=alwalw. - ®al

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications

Vg If Vi

11/66



The tensor product generalizes to an arbitrary number of vector spaces Vi,..., Vy. If Vi
has basis {vf,...,vk }, then

Vi@ Vy:= Span({@)(v}p e 7Vd)}n17~~-7”d )7

ig )it ig=1
where the tensor product ®(-,...,-) can be defined as

®@l..,af) =alw@e (@@ Twad)=alwalw. - ®al

The tensor product is multilinear:
al @ ®al® (aak+6bk> Ral®. .. @al
—oal®---®a?+fal® - @bl gadtle. .. .gad

forall k=1,2,...,d.
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An element 2 € Vi ® --- ® Vy that is expressed as
q = a]‘ R ® ad

is called a pure, simple, elementary, or rank-1 tensor.

If a’ = ajvi + ajvh + - - + ), vi,, then, as before, we have

1 d
A= Z Z e ' )i @ @ Vi
h=1 ig=1
Hence, 4 is represented in coordinates by a special n; X - - X ng coordinate d-array 4 in which
_ .1
A iy,...ig = 35y 0 @

n<n Iq°
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A rank-1 tensor visualized in Tensorlab:

91(.'! : 9
thresh= [l [=»] 10 j
degree = [« Tz Tol
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Universal property

The universal property of the tensor product states that for every multilinear map

¢: Vi x---xVy— W there is a unique linear map f : V1 ® - - - ® Vg — W such that the
diagram

Vix---x Vy ¢ W
Viw - Vy

commutes.

A nice consequence is that it enables easy definitions of linear maps acting on tensors.
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Flattening

A flattening is the linear map induced via the universal property of the multilinear map

“(mr) s VA X X Vi—= (V@0 Ve )@ (V@@ V)
(al,...,ad) = (@M@ ®@a™)(a™ ®...®aTd—k)T

where -* denotes the dual. It is a technique to turn a tensor into a matrix in many ways, by
forgetting some of the tensor structure.

It is common to use the following shorthand notations in the literature:!

k) = Lkit,..k=1,k+1,...d) and vec(T):= Ty . q4.0)-

ISome authors define qzk) = {Z-Ek;k-%—l 7777 d1,..., k—1)-
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For example, if
,
T:23i®bi®ci ceViaVvhoW
i=1
then the three standard flattenings are

r

Ty =Y aibiwc) eVie (Ve V),
i—1

Ty =Y bi(ai®c) € Ve (Vi@ Va),
i=1

r

Ty =Y cilai®b)T € Va® (Vi@ Va)".
i=1
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In coordinates, flattenings can be defined as follows. Let 7 be an n; X np X --+ X ng be a
d-array over k. Then, we can associate d vector spaces defined by these coordinates.

For example, a third-order tensor has 3 associated vector spaces:

Mode-1 vectors Mode-2 vectors Mode-3 vectors
(in k™) (in k") (in k™)
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c kn1><I12><n3

\ModeQ flattening

,‘4(2) = c kngxn1n3
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Flattening A1)

[alu sl L) [l elap By LN

e vla Ry o)
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Flattenings can be implemented on a computer for tensors expressed in coordinates by
rearranging the elements in the d-array of size n; X --- X n4 to form a 2-array of size

Ny v N XNy Ny

For example, an implementation of flattenings in Julia looks like this:

function flatten(A, pi, tau)
Aperm = permutedims([pi; taul)
Ak = reshape(Aperm, prod(size(A) [pil), :)
return Ak

end

All flattenings A1, k:k+1,....d) in which the order of the factors is not changed can be
implemented on a computer for free, i.e., they only need reshape.
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Multilinear multiplication

The tensor product of linear maps A; : V; — W;, where V;, W; are finite-dimensional vector

spaces, is the unique linear map from Vi1 ® --- ® Vy to Wi ® - - - ® Wy induced by the
universal property applied to the multilinear map

(Al,...,Ad)Z\/lX'-'X Vd—>W1®"'®Wd,
oo v = (A @ - @ (Agv9).

We denote the induced linear map by A1 ® - - - ® Ag.
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Consequently, by the universal property,
(A @ @A)V @ - @v) = (Av!) @ - @ (Agv?).

For general tensors 2 =3 ";_,; a} ®---®a,d € Vi ®:---® Vy we then have
r
(AA®---®ANA)=(A® - ®Ad) (Za}@---@a,‘-’)
i=1
r
=> (M@ ®Ag)(a} ®-- ®af)
i=1

=> (A1a]) @ - @ (Agaf)
=1

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 22 /66



The shorthand notation

(A, Ag) - A= (A1® - ®Ag)(A)

is commonly used in the literature. This operation is called multilinear multiplication.

The notation
Ak A:=(Id,... Id, Ag,Id, ... Id)- 4

is also used in the literature. This operation is called a mode-k multiplication.
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Note that
(A1, Ad) - Al (k) = AkA) (AL @ - @ A1 @ A1 ®@ -+ @ Ag) T
Hence, a multilinear multiplication can be computed in practice as follows:

function multilinear_multiplication(As, T)
n = size(T)
m = [size(A,1) for A € As]
for k = 1 : length(As)

T = reshape(T, n[k], :)
T = transpose(T) * transpose(As[k])
end
T = reshape(T, m)
end
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Overview

© Tucker decomposition (15')
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Tucker decomposition

The Tucker decomposition of 2 € Wi ® - -- ® Wy reveals a tensor product basis A1 ® - - ® Ay
and the coordinates C of a separable subspace Vi ® - -- ® Vj in which 4 lives.
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Assume we have a basis {v&, ... ,vfk} of the r,-dimensional vector subspace V| C W) and
that 2e Vi®---®@ Vg C W1 ®---® Wi. Then, there exist coefficients ¢; ;, € k such that

d

A= Z Zc’lv vigV '1 & - Qv
=1 ig=1

This is called a Tucker decomposition of 4.

The rp X -+ X rq d-array C is called the core tensor.
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Another viewpoint is as follows. Let 4 € W) ® --- ® Wy. If there exist linear maps
A; Vi — W, and a tensor ¢ € V1 ® --- ® Vj such that

A=(A1® - ®Ay)(C) = (A1,...,Aq) - C,

then this expression is a Tucker decomposition of 4.
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Multilinear rank

We say that V7 ® - - - ® Vjy is the minimal separable tensor subspace 2 € W, ® --- ®@ Wy
lives in if
42e6Vi® - QQVsgCW®--- @ Wy

and there are no V| C V/ with at least one of these containments strict such that
aeVi®---o V)

Lemma

Let 2 e Wi ®---® Wy. The minimal separable tensor subspace in which 4 lives is
Vi®---® Vy if and only if

Vi = span(A4y))
forall k=1,2,....,d.
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Definition (Hitchcock, 1928)

The multilinear rank of 4 is the tuple containing the dimensions of the minimal subspaces Vj
that comprise the minimal separable tensor subspace that 4 lives in:

mlrank(2) := (dim V4, dim V5, ... dim Vy).
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In case the matrix A lives in the minimal separable tensor subspace Vi ® V5, the multilinear
rank is, by definition,

mlrank(A) = (dim Vi, dim V3) = (rank(A(y)), rank(A())) = (rank(A), rank(AT)).

In the matrix case, we attach special names to V4 and V5:
@ V4 is the column space or range, and

@ V) is the row space.
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When 4 € Vi ® V5 lives in the minimal separable tensor subspace Vi ® V5, the fundamental
theorem of linear algebra states that dim V; = dim V5. Therefore,

mirank(A) = (dim Vi,dim V,) = (r, r).

That is, not all tuples are feasible multilinear ranks! This observation generalizes to
higher-order tensors.

Proposition (Carlini and Kleppe, 2011)
Let 2 € Wi ® - -- ®@ Wy with multilinear rank (r1,...,rq). Then, forall k =1,...,d we have

rkSHrj.

J#k

The proof is left as an exercise.
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Overview

@ Higher-order singular value decomposition (40°)
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Higher-order singular value decomposition

The compact higher-order singular value decomposition (HOSVD), popularized by De
Lathauwer, De Moor, and Vandewalle (2000) but already introduced by Tucker (1966), is a
particular strategy for choosing orthonormal bases of Vj for a tensor

A2eVi® - Vg W ®--- Wy.
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The HOSVD chooses as orthonormal basis for Vj the left singular vectors of 4(;). That is,

let the compact SVD of A be
Aky = UZk Qg
Then a basis of Vj is given by Uy € k>,

This orthogonal basis of V1 ® --- ® Vg,

U - ®@Uy:= [U,l1®"‘®ud Mlyeesld

Igdip,....ig=1"

is called an HOSVD basis. It reveals (a basis for) the minimal separable tensor product
subspace in which 4 lives.
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Since 4 lives in Vi ® - -+ ® V and span(Uy) = V4, there must exist coordinates ¢ € k**"d
= (U1 @@ Uy)(C) = (U1,...,Uq)-C

so that

(Uf,...,Uy)-a=(Uf,...,Uy) - (Un,...,Uq) - C)

(U1U1,...,U§Ud)~c
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By definition of the compact SVD, we have
re = dim Vj = rank(Ux),

so the HOSVD reveals the multilinear rank as well.
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Algorithm 1: HOSVD Algorithm
input : A tensor 4 € kM*n2xxnd
output: The components (Ui, Us, ..., Uy) of the HOSVD basis
output: Coefficients array ¢ € k2> x/d
for k=1,2,...,d do
‘ Compute the compact SVD A = Uk, Q;;
end
C+ (Uf,U3,...,U3) - 4
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The HOSVD provides a data sparse representation of tensors 4 living in a separable
subspace.

If 2 € km>n2x>nd has multilinear rank (r1, 2, ..., ry), then it can be represented exactly via
the HOSVD using only
d d d
H re + Z nere < H Ny
k=1 k=1 k=1

N e

core tensor  basis vectors

storage (for C and the U;).
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Approximation algorithms (by truncation)

In applications, tensors 4 often (only) lie close to a separable subspace Vi @ --- ® V4. This
leads naturally to

The low multilinear rank approximation (LMLRA) problem

Given 4 € k™>"*Md and a target multilinear rank (ry, ..., ry), find a minimizer of

min 14— 3| ¢
mirank(B)<(ri,...,rq)

Visually, we want to approximate 4 by

Q
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Since mlrank(8) < (r,...,ry) is equivalent to the existence of a separable subspace
Vi® -+ ® Vg in which B lives, we can write B = (Uy, Ua, ..., Uy) - C where Uy € k™' can
be chosen orthonormal by the existence of the HOSVD.

After finding the subspace, the optimal approximation B is the orthogonal projection of 4
onto this subspace:
B = PU1®..A®Ud/q.

Consequently, the problem is equivalent to

min a4—-Pye.ou,a
UkESItnk,rk H U1 ®--QUyg ||F

where Stp, , is the Stiefel manifold of m x n matrices with orthonormal columns.
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Proposition (V, Vandebril, and Meerbergen, 2012)
Let Uy ® --- ® Uy be a tensor basis of the separable subspace V1 ® --- ® V4. Then, the
approximation error

d d

“,‘21 - PU1®---®Ud“qH% = Z Hﬂ-Pk—l M A= T Tyt 7rP1’qH%-' = Z HW;JJ;WP/(A o '7rP1’q”%-"
k=1 k=1

where p is any permutation of {1,2,...,d} and

A= (UUf) -« 4 and ﬂ,fﬂl:: (I — UkUg) -« 4.

Visually, the proposition states that an error expression is

ﬁ
T TR P
14 — mmmsal? = |atal? +lrdmAal? +img mmal
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Since orthogonal projections only decrease unitarily invariant norms, we also get the

Corollary
Let Uy ® --- ® Uy be a tensor basis of the separable subspace Vi ® ---® V4. Then, the
approximation error satisfies

d

12 - Pug--su,alE < Imcal?,
k=1

where ;a4 = (U;Uf') - 4.

Visually, the corollary states that an upper bound is

ﬂ

il

H/q — 7T17T27T3/‘4H2

<

lmial® +llmzal? + |7z 4l
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A closed solution of the LMLRA problem
min a4-P A
Uk€Stn, 1, H the--®Us HF

is not known.

Nevertheless, we can exploit the error expression and the upper bound for choosing good, even
quasi-optimal, separable subspaces to project onto.
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T-HOSVD

The idea of the truncated HOSVD (T-HOSVD) is minimizing the upper bound on the error:

ﬂ
- — = "
|4 — mymomsA||? Imtal? +llmal> + |74l

If the upper bound is small, then evidently the error is also small.
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Minimizing the upper bound results in

d

min [|4 -7 7gA|F < min > [lmalf
T yeeny T T yeesTd —1

I
B

min |12
k

~
Il
—

I
hE

in 1Ak — UkUpa Iz

m
UkGStnk,rk

=
|

1

This has a closed form solution, namely the optimal Uy should contain the r, dominant left
singular vectors. That is, writing the compact SVD of 4 as

Ay = Uk Qf

then Uy contains the first r, columns of U.
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The resulting T-HOSVD algorithm is thus but a minor modification of the HOSVD
algorithm.

Algorithm 2: T-HOSVD Algorithm
input : A tensor 4 € kMxMmXxnd
input : A target multilinear rank (r, o, ..., rq).
output: The components (Uy, Us, ..., Uy) of the T-HOSVD basis
output: Coefficients array C € kx> x4
for k=1,2,...,d do
Compute the compact SVD A = Ukx,Q;;
Let Uy contain the first r, columns of Uy;
end

C+ (U1, 0s,...,Uy) - a;
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The resulting approximation is quasi-optimal.

Proposition (Hackbusch, 2012)

Let 4 € km**"d and let A* be the best rank-(r1, ..., ry) approximation to ‘B, i.e.,

4—a|g = i A—BlF-
H HF mlrank(ir;r)]g(l’l,uwrd) H HF

Then, the rank-(ri,...,rq) T-HOSVD approximation At is a quasi-best approximation:

14— ar||r < Vd||a— a*||e.
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ST-HOSVD

The idea of the sequentially truncated HOSVD (ST-HOSVD) is sequentially choosing
projections with the aim of minimizing the error expression:

ﬂ
B i TR 57
|2 — mmmsal|® = x| +llmymal® + |3 mmal®
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ST-HOSVD greedily minimizes the foregoing error expression. That is, it computes
71 =arg min ||z 4|
T

Tp = arg min ||7r2L%1ﬁl||2
T

Ty = arg min ”W(J/_;T\dfl ce %2%1)4”2
4
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In practice, ming, |77 k—1 - 714||F is computed as follows:

min | UkUpAuy(UiUs @ -+ @ U U @ 1@ -+

UkEStnk,rk

where we define

min U Ui agy(Us @@ Uiy @le--o ) |F
k

. * ~k—1
”L‘j'kn HUkUkC(k) £,

K= (Up, . U ) A= U 1 O3

The solution of miny,est,, || Uk UZC(kkSIHF is given by the rank-ri truncated SVD of C(kk;l'
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Visually, here's what happens for a third-order tensor.

/]
e

1 _ %0 2 7yx Al 3 7k 2
Gy = Uiq Go) = U2 Q) Ga = Us ()
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The ST-HOSVD algorithm is thus a minor modification of the T-HOSVD algorithm.

Algorithm 3: ST-HOSVD Algorithm

input : A tensor 4 € k™ xMxxnd

input : A target multilinear rank (ri, 2, ..., rg).

output: The components (Ul, Ug, el Ud) of the ST-HOSVD basis

output: Coefficients array ¢ € k"x"2% "1

¢+ 7

for k=1,2,...,d do
Compute the compact SVD () = Ukxi Qy;
Let Uk contain the first r, columns of Uy;
C+ U,’j % Ci

end
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The resulting approximation is also quasi-optimal.

Proposition (Hackbusch, 2012)

Let 4 € km**"d and let A* be the best rank-(r, ..., ry) approximation to 4, i.e.,

4— 2| = i A—BlF-
H HF mlrank(ir;r)]g(l’l,uwrd) H HF

Then, the rank-(r1,...,rqy) ST-HOSVD approximation As is a quasi-best approximation:

12— sl < Vd||a— 2.
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Computational performance

Assume that we truncate a tensor in k" *" to multilinear rank (r,...,r). The computational
complexity of ST-HOSVD (with randomized truncated SVDs) is

d
o (rnd + Z nd+1_krk> operations,

k=2

which compares favorably to T-HOSVD's

@) (drnd> operations.

Note that larger speedups are possible for uneven mode sizes ny > np > --- > ngy > 2, as
you will show in the problem sessions.
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Overview

© Application: dimensionality reduction (5')
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Application: dimensionality reduction

A general, main application of the truncated HOSVD consists of dimensionality reduction.

A truncated HOSVD identifies the minimal separable tensor subspace V; ® - -+ ® V4 in which a
tensor 2 € Wi ® - -- @ Wy (approximately) lives. As a geometric principle, geometric
properties of 4 do not depend on the basis in which 4 is expressed!

Hence, most geometric analyses of 4 can be applied verbatim to the coordinate tensor C,

expressing 4 relative to V; ® --- ® V. This type of general and (usually) fast preprocessing is
called Tucker compression.
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Dimensionality reduction is also a stand-alone use case. That
is, compression of (structured) higher-order data arrays. In
Baert and V (2021), we considered data from

@ X-ray scans,

o diffusion tensor images,

@ hyperspectral images, and

@ simulation results of partial differential equations (CFD,

climate, and weather).

These data sets can get large quickly!

@ Isotropic-V is a 1.5GiB tensor of size 512 x 512 x 512 x 3,

@ Deforest-33 is a 12.0GiB tensor of size
19 x 79 x 33 x 180 x 360,

@ Hurricane is a 24.2GiB tensor of size
13 x 20 x 100 x 500 x 500.

Tensor decompositions and their applications



Compression factor: 48.8 Compression factor: 152 Compression factor: 639 Compression factor: 4948
Relative error: 0.30% Relative error: 1.00% Relative error: 3.00% Relative error: 10.1%
PSNR: 69.8 dB PSNR: 59.4 dB PSNR: 49.8 dB PSNR: 39.3 dB

Fig. 2. ATC compression examples using the Isotropic-PT dataset. Each visualization only shows the first time slice of the data tensor,
while the statistics in the captions represent the full data.

Uncompressed size is 800MiB.
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Conclusions

The higher-order singular value decomposition can identify the minimal separable tensor
subspace in which a given tensor lives. Most analyses can then proceed on the core tensor.

Tucker compression

- ]
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