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Overview

© Introduction (5')
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Singular value decomposition

", [

Linear algebra —

is extended to

Tensor trains decomposition

Multilinear algebra ” M
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Before we delve into the details, it will be helpful to keep in mind the following definition of

the tensor trains decomposition in coordinates.

We say that 4 € k™*m%"X"d admits a tensor trains decomposition with bond dimensions
., rg—1) if each entry of the tensor is a contracted matrix chain multiplication, like so

(n,..

ld—1

n
Qiy iz, .cyig—1,0g — Ay

In the quantum physics literature where this decomposition originated it is called a matrix

A

product state, for obvious reasons!
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Overview

© Tensor network notation* (45')
@ Definition
@ Examples
@ SVD as a pair of scissors
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Tensor network notation

In the quantum physics literature a tensor network notation originated to succinctly visualize
several tensor decompositions. See Ye and Lim (2018) and Orus (2014).

A general third-order tensor 4: Matrices that have a factorization USV:
W»
Ef EK E; E
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A tensor network (TN) is a visual representation of tensor decompositions that can be realized
as tensor contractions. A TN consists of the following:

@ Each tensor 4; in the network is represented by a node:

© Nodes j and j can be connected with contraction edges. This is an edge between nodes,
labeled on one side with a vector space Ej; and on the other side with its dual. The
dimension of this vector space is the bond dimension.

H E; Ey 'E

© Tensors in the network can have output edges. This is an edge between a node and an

output vector space W;.

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 10 /61



A tensor at a node lives in the tensor product of
@ the output vector spaces of its output edges and

@ one of the vector spaces on the contraction edges.

W>

E* E
W1 \\/‘9 @

In the above example,

ae W, @ W, ® E* and BeWs; W, E.
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The tensor represented by a TN is obtained by contracting along the contraction edges.
Tensors 4 and B in adjacent nodes connected through a vector space E can be contracted to
a single tensor, as follows.

let 2e Vi ® - QV,QE*and Be W1 ® ---® W, ® E. Then, there are expressions
r S
A=) vie--evPeff and 3= wo--ow g
i=1 j=1

Their contraction along vector space E is defined to be the tensor given by tensoring 4 and
B and then contracting out E with its dual E*:

r S
C:szf(gj)'V,-1®~--®v,f"®w}®...®wjn;
i=1 j=1

itlivesin Vi® -V, oW ®- - W,.
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Visually, this looks like this:

W2 W2
E* E
Wi @ @ W3 = Wi <C> W3
W,y W,

The tensors
AcWQWoQE* and Bc EQ W30 W,

can be contracted on E, resultingin c € W1 @ Wh ® V3 ® V4.

The left picture generally represents a smaller set of tensors!
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Coordinatewise contraction definition

Alternatively, contraction of 4 and B can be defined as follows. Let vk be a basis of Vi, w¥ a
basis of W, and e; a basis of E with dual basis e

7. Then,
dim Vp dim V,, dim E*
— _ m *
A= [3i1,.~,im,j] = E § E aip,... lm,JVll K-V, Qe
=1 im=1

dim W; dim W,, dim E

B = [bj1,-~~,jm71 Z Z Z bj,... ,Jnu’W @ - ®er; ©ejr

a=1 Jn=1 j’'=1
and the contraction of 4 and B is
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Coordinatewise contraction definition

Alternatively, contraction of 4 and B can be defined as follows. Let vk be a basis of Vi, w¥ a
basis of W, and e; a basis of E with dual basis e

7. Then,
dim Vp dim V,, dim E*
m *
= [a;,... lm,J] = aip,... lm,JVll K-V, Qe
=1 im=1

dim W; dim W,, dim E

B = [bj1,-~~,jm71 Z Z Z bj,... ,Jnu’W @ - ®er; ©ejr
a=1

=1 j'=
and the contraction of 4 and B is

dim V; dim V, dim Wy dim W, dim E dim E

Z Z Z Z Z Z 0jj A imoj Dy .. ,Jn,J’V -
=1

m 1 n
RV Qwp @ QW
im=1 j=1 =1 j=1 j’=1

Jn
dim E

Y " aiimibissin
j=1
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In conclusion, an edge between two tensors can be contracted in coordinates by summing
over the joint index that the edge represents.

The key point is that this is true for any choice of coordinates!
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Example I: Low-rank matrix decomposition

kr * kr
Consider the concrete example: k™ @ () @ (k")*

Let e; be basis vectors of k™, f; basis vectors of k" (with dual basis vectors f;), and g basis
vectors of (k”)*. Let

A=lagly =) > ayei®ff and B=[bplpx =Y D bpufy g

Then,

r
> aybi | ei @ g
W i=lk=1 =1
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Example I: Low-rank matrix decomposition

kr * kr
Consider the concrete example: k™ @ () @ (k")*

This represents the matrix multiplication of A € k™*" with B € k"*". The matrices in k™*"
represented by this tensor network are all of the form C = AB.

When r < m, n, this can be interpreted as a low-rank matrix decomposition.
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Example Il: rank-1 tensors

A rank-1 tensor 2 € W) ® --- ® Wy is the tensor product of vectors in W;. Let E be a

one-dimensional vector space with basis vector e and dual basis e*

. Then the TN notation for
a rank-1 tensor is:

E/_\E* ElCNE_E
LT

Wy

3

ﬁl:(e*(e)---e*(e))wl®w2®--.®wd:W1®W2®...®Wd
This is usually abbreviated to

?@39
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Example Ill: Tucker decomposition, third interpretation

Tensors admitting a Tucker decomposition with
multilinear rank bounded by (r,...,ry) are
represented by the TN on the right, assuming
r; =dim V.

After some computations, you can find that the
tensors represented by this network are of the form

rn r'd
q4 = Z Z(Ul)h,jl "'(Ud)idajdcjlanmjd
h=1 Ja=1 yeeeslg
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Example IV: Matrix chain and cycle multiplication

Matrix chain decomposition:

W () BOE B Frs
NGOG NG NG

A=AlA - Ay

Matrix cycle decomposition:

O O O O

a = trace(A1Az - Ay)
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Example V: Matrix product states

Tensor trains decomposition:

* * EX . E4_
A E; E1/A\E2 Ezm d—1 dlA

2

d

W]_ W2 .. Wd

Tensor ring decomposition:

ErANE B ANE B /\E1 B (B
n

1

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications



i ™

SHOULE | ASk 7 MAYEE | SHOULD WAIT
WUAT IF HE ALREADY UNTIL AFTER THE
AHSWERED (TP 1S T A TaLk, Do | BEALLY
DuB QUESTION? AM | HEED TO ASk T M

CAR | TAKE
THE LEFT OVER

&G To EMBARRASS PUBLIC? BUT WHAT IF
MYSELF M FROMT oF I'M HOT THE oMLY oHE?

L\IELERY-'D:’E;-‘\J-
o

ey

£ JORGE CWAM B 2013

Wi . PHRDCOMICS, COM

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 22 /61



The SVD as a pair of scissors

The singular value decomposition is a way of cutting up the tensor product of vector
spaces into “smaller” pieces. For two vector spaces we have:

v——(a) we s, v——{U)E E@ w

Combining this with flattenings
Wy
Wi

)

/\& W, ~ Wi®- - W @ W;_H@"'@W;
W5 W3
Wa

creates a very potent tool!
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Wy

4%
flattening
We a Wa Wi®--- @ W @ Wi @@ Wj
Ws Ws
Wi SVD
Wi Wi
Wi ®--- @ Wk
E* reshape
E E*
E
W1 Wy
a® e W
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Overview

© Tensor trains decomposition (35')
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Tensor trains decomposition: first interpretation

A tensor trains decomposition of a tensor 2 € Wi ® - - - ® Wy with bond dimensions

(ri,...,rg—1) is a TN with the following structure:
Er  F E B Ei , Eq Er  Esa
Wy W, e Wa_1 Wy

where r; = dim E;.

Let's try to view this in coordinates ...
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Let w,’-‘ be a basis of Wy, and assume that 4 is expressed relative to the tensor product basis.
Contracting 4 with a basis vector w} @ --- @ w, we get:

El* E1 E2* E2 E;_Q Ed72 E;_l Edfl

4= Ay @ m @ Ag
Wy Wa Wa_1 Wy
Wy Wi Wi Wy

T
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Let w,’-‘ be a basis of Wy, and assume that 4 is expressed relative to the tensor product basis.
Contracting 4 with a basis vector w} @ --- @ w, we get:

EY E E; E Ej_ o Eq- E; , Eq—

Wy Wa o Wa_1 Wy
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Let w,’-‘ be a basis of Wy, and assume that 4 is expressed relative to the tensor product basis.
Contracting 4 with a basis vector w} @ --- @ w, we get:

* X Ej » Egq— Ej ; Egq-
= ()T B ) E BT i B,

celd i w U w iq
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Let w,’-‘ be a basis of Wy, and assume that 4 is expressed relative to the tensor product basis.
Contracting 4 with a basis vector w} @ --- @ w, we get:

g = (ol VL B\ B TR Baga b B

2

= (ah)TAZA3 ... A9 1,
1 "3 Id—1 " 1d

where AX is the jxth slice of 4, € Ex 1 ® E} @ Wj in the factor Wj; that is,

Al = (1, 1,wh)* 2y =
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In conclusion, a tensor 2 € W) ® --- ® Wy admits a tensor trains decomposition if there exists
a tuple

(A1,2,...,9-1,Aq) = A1 A Aq_1 Ay
such that
ld—1
i
Ay, igyensid—1,0d — A A 7 T Ad—1 Ad
i
Id
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Tensor trains decomposition: second interpretation

A complementary way to view a tensor trains decomposition by Grasedyck (2010) comes from
successively nested partially separable tensor product subspaces. The tensor trains
assumption is that a tensor 2 € Wi ® - - - ® Wy lives in the intersection of the following
successively nested subspaces

VigWo® - @ Wy

V1,2®W3®"'®Wd V172CV1®W2
Vipz @ Wa @ - @ Wy Vip3 C Vip®@ Wi
Vi,..d-1® Wy V1,d-1C V1, d2® Wy_1

That is, a tensor 4 living in the intersection of the above vector spaces has a tensor trains
decomposition with bond dimensions (dim V4,dim Vi 5,....dim Vi 4_1).

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications



Assume 4 = [a;,_;,] is expressed with respect to the tensor product of the bases Wy = [w¥]
for Wi. Let Uy« be a basis of V; _x (expressed w.r.t. the tensor product basis
Wi ® .- ® Wkg). Denote

ni = dim Wi and rne=dimVy .

Since Vi x C Vi, k-1 ® W there exists a matrix A, € k' 17>k such that
U,k = (U1, k-1 ® Wi)Ax,
and because 4 € Vi 41 ® Wy, there also exists a final matrix Ay € k'@-1*" such that

Aa,...d-1,d) = U1, .d-1Ad-
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After recursively unwinding the foregoing definitions, we have

A, d-1.d) = (U1 @ Wa)Ar @ Wa) Ag--- @ Wy_1) Ag_1Aq

aj, 7"d:(W}17"' WZ)*ﬂ
1
= (wj, ® -+ ,dl)ﬂ(l Ld—1;d)W

= ((wh) v (Wa) o)A @ (i ) W3) Ag - @ (WE2) Wy 1 ) A1 Aqw).
We observe that, suitably defining 4, € k"-1*"*" e have for every compatible X, Y that

(X @ Y)A=(X® Y)(A)a32 = (X, 1, Y) - A) (13
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Note that (w,-kk)*Wk vanishes completely, except on the i th basis vector where it is 1.

Consequently,

(1 @ (w

) Wk)Ak—e 3 Ak =

Ay

Hence, further parsing our expression, we find

ai oy = (((Wh)"Ur © (W3)" Wa) Ao @ (W3)" W) As- -

= (U1)i: (e 3 )(e] -33) -+ (e]_, -3 Aa—1) (Ad

Nick Vannieuwenhoven (KU Leuven)
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In conclusion, we have

ld—1
i
Ay, igyensid—1,0d — Uy A 7 s Ad—1 Ag
i
Id
= ()i (e 3 A2)(e] 343) -+ (] 3 A9-1) (Ad)-i,
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Tensor trains rank

Observe that if

AcVi, QW1 ®---@ Wy with Vi (CW®- @ W

then necessarily
A1, kik+1,nd) € V1 k @ (W1 @ - @ Wy)*
o)
Vi .k =span(Aa,  kk+1,..d)) C V1, k-

In fact, choosing V| , results in the minimal nested partially separable tensor product
subspace in which 4 lives.

The corresponding tensor trains rank is defined to be

(dim Vi, dim V{5, ....dim V] ;).
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The tensor trains decomposition provides a data sparse representation of tensors A4 living in
successively nested subspaces.

If 4 € km>n2xXNd has tensor trains rank (r1, r2, ..., ry—1), then it can be represented exactly
using only
d—1
nmrn  + rqg-1ng +Z Fk—1"ic Nk
- M i=2 v

first matrix  final matrix ~“ transfer tensors

storage (for A1, Ay and the 4;'s).
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Computing a minimal tensor trains decomposition

Using compact SVD as our scissors, how do we do this?

Wa
Wi
Wﬁ W2
l .
W5 W3
W,

* * EY Eq_ E? Eq_
A E; El@EQ Ezm d—2 d2@ d—1 dl?

A W, e Wey_1 Wy

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications



Here's how it goes:

Wy
1%
We Wa
Ws W3
W,

Nick Vannieuwenhoven (KU Leuven)
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Here's how it goes:

Wy
1%
W5 W2
Ws Ws
W,
flattening

Wl{;%W;@)---@Wj

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 40/61



Here's how it goes:

Wy
1%
W5 W2
Ws Ws
W,
lﬂattening

Wl{;%w;@---@W;

SVD

_—

Wy

Ef E
"lll'%II{'IiI} VV; QR Lqﬂj

For data tensors, replace the compact SVD by a truncated SVD. This will give you an optimal
approximation each time you apply the scissors.
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Here's how it goes:

W, W;
I Wq 2 W3
We W f E14<ﬁl% Wa
5 Wa 3 Wi W,
lﬂattening Tunﬂatten and decouple
Er E
W14@7W;®"'®W; ﬂ, W2*®...®W;

Wy
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Here's how it goes:
Wa
Ws
E1 W4

Way
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Here's how it goes:

W,
Ws
E, W,y
Wa
lﬂattening

E1®W2—@—W§®---®Wj
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Here's how it goes:

W,
Ws
E, W,y
Wa
lﬂattening

E5 B
Ei @ W, 4444<::::>444, L44; R R an; __f§)f£2_, "Ii!l}zz‘llilb 144; R ® VV;
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Here's how it goes:

W,
Ws
E, W,y
Wa
lﬂattening

W3 W,
E {IIi!I’E?; fiz%i:#::zgi: Ws
W2 Wd ...

Tunﬂatten and decouple

E5 B
Ei @ W, 4444<::::>444, L44; R--R an; __f§)f£2_, "Ii!l}zz‘llilb 144; R ® VV;
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TT-SVD algorithm

Algorithm 1: TT-SVD Algorithm (Oseledets, 2011)
input : A tensor 4 € kM xmxxnd
input : A target tensor trains rank (ri,r, ..., r4g—1).
output: The components (A1, 42, ..., 441, Aq) of the tensor trains decomposition
Compute the rank-r; truncated SVD A1, . ¢y =~ A1X1QT;
A1:2,..d-1) < L1Q7;
for k=2,...,d —1do
Compute the rank-ry truncated SVD A1 5.3 . g—k+1) & Uki Q)
(Ak)(1,3:2) < Uk
A2, d—k) < Lk Qp;
end
Ad < A1),

Note: the only difference with the ST-HOSVD is using slightly different flattenings.

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 41/61



Approximation error

The approximation produced by TT-SVD is quasi-optimal.
Proposition (Oseledets, 2011)

Let A€ Wi ®---®@ Wy, and let 2* be the best tensor trains rank-(ry, .

.., I4—1) approximation
to B, i.e.,

H ||F tnank(ﬂ)g(nynﬂu—1)|| HF

Then, the tensor trains rank-(r, .

..y r4—1) TT-SVD approximation At is a quasi-best
approximation:

|4 — Arrllr < Vd = 1|2 - 2%||¢.
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Subspace-revealing variant

The tensor trains decomposition can be further refined to reveal a tensor product basis of the
minimal separable tensor subspace in which 4 lives.

For this it suffices to compute one more SVD for each 4; in the tensor trains:

Vi Vi E; Eq_> Vi1 Vaa
4= U : @ 2 m @ Uqg
Vo Vi-1
Vi Vi
B 2 d o
W2 e Wd_1

By a suitable change of basis along the contraction edges, all U; can be chosen as matrices
with orthonormal columns.
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Overview

@ Application: dynamic tensor approximation (20')
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Application: dynamic tensor approximation

A major advantage of the tensor trains decomposition is that it allows fast operations, like
@ scalar multiplication consists of multiplying any of the tensor or matrices by the scalar;
@ multilinear multiplication [what does it look like in tensor network notation?];

© recompression, essentially by applying HOSVD compression to the transfer tensors in the
tensor train;

O adding two tensor trains with bond dimensions (r1,...,ry—1) and (s1,...,S4—1) can be
implemented reasonably, but requires recompression as bond dimensions grow to
(r1 +S1,...,Fg—1 + Sd,]_).
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Tensor trains are a great tool for approximating and compactly representing smooth and
tensorized functions (discretizing either the domain or function space).

Large-scale tensor train approximations have been used for
@ approximating the ground state of 1D quantum many-body systems (White, 1992);

@ approximately solving linear systems originating from differential equations (Oseledets and
Dolgov, 2012);

@ approximately solving partial differential equations (Dolgov, Khoromskij and Oseledets, 2012);

@ approximate integration of time-dependent partial differential equations on tensor grids
(Lubich, Rohwedder, Schneider and Vandereycken, 2013)

@ approximate solution of stochastic partial differential equations (Dolgov, Khoromskij,
Litvinenko and Matthies, 2015)

@ tensor completion for incomplete data (Grasedyck, Kluge and Kramer, 2015);

@ dimensionality reduction in deep neural networks (Novikov, Podoprikhin, Osokin and Vetrov,
2015);

@ approximately solving parameterized eigenvalue problems (Ruymbeek, Meerbergen and
Michiels, 2020);
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Consider solving a time-dependent partial differential equation

o ulx,t) = g(ulx, 1)

where u(x, t) is the unknown solution, g(y) is a nonlinear operator, and the initial value
u(x,0) is given.
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Abstractly, this differential equation defines a vector field in (x, t) that should be integrated
in the time direction:

vector field
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Assume that we solve this differential equation with a forward integrator, e.g., forward Euler.
That is, the solution u(x, s) is approximated by Us(x) with the scheme

Uste(x) = Us(x) +e- g(Us(x))
N—_——

tangent direction

Suppose that at each timestep s, the solution u(x,s) can be approximated well by a tensor
trains decomposition with fixed bond dimensions. How can we exploit this?
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Option 1: Ad-hoc approximation

Naively, we could add an approximation step

~

Oste(x) < App (Os(x) + € g(Us(x)))

where App takes an element from the ambient space and finds the closest tensor trains
approximation with fixed bond dimensions.

Finding the best approximation cannot be guaranteed generally. A more practical scheme is
Usie(x) ¢ TT-SVD (Us(x) te. g(US(X))>

where TT-SVD applies the TT-SVD algorithm with some fixed bond dimensions.
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Option 2: Integration on manifolds

An alternative consists of exploiting the following result.

Theorem (Holtz, Rohwedder and Schneider, 2012)

The set of all tensor train decompositions with bond dimension equal to (r1,...,r4—1) has the
structure of a smooth submanifold of R™ > %4
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A smooth manifold globally looks like a smooth surface
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A smooth manifold globally looks like a smooth surface, and locally like a linear space

i—
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At every point x of a manifold M, this first-order approximation of M at x is called the
tangent space T, M. The dimension of this space measures the size (dimension) of M.

Assuming we want a solution on the manifold of tensor train decompositions 7, we are thus
looking to integrate our differential equation restricted to 7. For this, we need to project
the vector field to the tangent spaces of 7.
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So, our update would look like this:
Use(x) = Us(x) + e~ Pr7(g(Us(x)))
— ————————
projected tangent vector to T 7T

However, we cannot simply add these vectors!

In case of tensor trains, a suitable retraction operator R is TT-SVD.
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Using this type of integration scheme, Dektor and Venturi (2021) computed the following
snapshots of the approximate solution of the Fokker—Planck equation and compared them to
the classic scheme

00258 0.0285 2%

=

0253 pozss G

0.025 0.0245 0

00285 o2y

00265
0.0256

Full tensor product

0.0245 0.0235
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Overview

© Conclusions
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Conclusions

The tensor trains decomposition is particularly well-adapted for approximating

high-dimensional tensors that represent (tensorized) solutions of physical systems modeled for
example by differential or integral equations.
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