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Linear algebra

Multilinear algebra

is extended to

Singular value decomposition

= + · · ·+

Tensor rank decomposition

= + + · · ·+
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= + · · ·+

= + + · · ·+

One interpretation of the com-
pact SVD of a matrix A is that
it reveals a minimum-length ex-
pression of A as a sum of rank-1
matrices.

This interpretation generalizes
immediately to tensors. The re-
sulting tensor rank decomposi-
tion can be used for exploratory
data analysis.
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Tensor rank decomposition

The decomposition introduced by Hitchcock (1927) that expresses a tensor as a
minimum-length linear combination of rank-1 tensors,

= + + · · ·+

A = a11 ⊗ · · · ⊗ ad1 + a12 ⊗ · · · ⊗ ad2 + · · ·+ a1r ⊗ · · · ⊗ adr

was rediscovered several times and hence goes by many names:

tensor rank decomposition,
parallel factor analysis (PARAFAC),
canonical decomposition (CANDECOMP),
CP decomposition,
separable representation, and
canonical polyadic decomposition (CPD).
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Tensor rank

Since

V1 ⊗ · · · ⊗ Vd := span({v1
i1 ⊗ v2

i2 ⊗ · · · ⊗ vd
id
| 1 ≤ ik ≤ dim Vk , k = 1, . . . , d})

where {vk
1 , v

k
2 , . . . , v

k
nk
} is a basis for Vk , every tensor A ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vd has an

expression

A =
∑

i1,i2,...,id

ci1,i2,...,id v1
i1 ⊗ v2

i2 ⊗ · · · ⊗ vd
id
.

Hence, there exist polyadic decompositions for every tensor A.

Definition (Tensor rank)

The rank of A is the minimum number of rank-1 summands in a polyadic decomposition of A.
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If A =
∑r

i=1 a1i ⊗ · · · ⊗ adi is a tensor rank decomposition and (π, σ) partitions {1, . . . , d}, then

A(π;σ) =
r∑

i=1

(aπ1i ⊗ · · · ⊗ aπki )(aσ1i ⊗ · · · ⊗ aσli )T .

This proves the following

Lemma

If A ∈ V1 ⊗ · · · ⊗ Vd has rank r , then for every partition (π, σ) we have

rank(A(π;σ)) ≤ r .

In particular, if A’s multilinear rank is (r1, . . . , rd) and its tensor trains rank is (s1, . . . , sd−1),
then

max{r1, r2, . . . , rd , s1, . . . , sd−1} ≤ r .
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Tucker compression

A very practical observation is the following fact.

Lemma

Let Ai : Vi →Wi and A ∈ V1 ⊗ · · · ⊗ Vd . Then,

rank((A1, . . . ,Ad) · A) ≤ rank(A)

When all Ai are injective, i.e., their matrices have linearly independent columns, then applying
the lemma first to the Ai ’s and then to their left inverses A†i results in the next

Lemma

Let Ai : Vi →Wi be injective and A ∈ V1 ⊗ · · · ⊗ Vd . Then,

rank(A) = rank((A†1, . . . ,A
†
d) · ((A1, . . . ,Ad) · A)) ≤ rank((A1, . . . ,Ad) · A) ≤ rank(A)
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In particular, if A has a compact higher-order singular value decomposition (HOSVD)

A = (U1, . . . ,Ud) · C ,

then
rank(A) = rank(C).
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This is not the only useful property that is invariant under orthogonal Tucker compression.
When Ui has orthonormal columns, we have invariance of

rank (de Silva and Lim, 2008),

identifiability (Chiantini, Ottaviani and Vannieuwenhoven, 2014), and

sensitivity (Dewaele, Breiding and Vannieuwenhoven, 2021)

under orthogonal Tucker compression.

orthogonal Tucker compression

That is, several essential properties of the tensor rank decomposition of A = (U1, . . . ,Ud) · C
and its core tensor C are the same.
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The previous observation is exploited by Bro and Andersson (1998) in the CDE approach to
computing a tensor rank decomposition:

C: Compress A with an HOSVD A = (U1, . . . ,Ud) · C to the core tensor C .

D: Decompose the core tensor C =
∑r

i=1 c1
i ⊗ · · · ⊗ cd

i .

E: Expand this decomposition of C to A =
∑r

i=1(U1c1
i )⊗ · · · ⊗ (Udcd

i ).

This approach is much faster than computing a tensor rank decomposition of A directly in
the large space V1 ⊗ · · · ⊗ Vd .
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Identifiability

We say that A ∈ V1 ⊗ · · · ⊗ Vd is r-identifiable if there is a unique set (of cardinality r) of
rank-1 tensors {A1, . . . ,Ar} such that

A = A1 + · · ·+ Ar .

In other words, if A is r -identifiable and we have

A = A1 + · · ·+ Ar = A ′1 + · · ·+ A ′r

then necessarily
{A1, . . . ,Ar} = {A ′1, . . . ,A ′r}.
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Identifiability of tensors is radically different from the matrix case (d = 2). Indeed, if
A ∈ km×n is a rank-r matrix, then

A = UV T = (UX )(X−1V T ) for all X ∈ GL(r , k)

For most choices of X , we have that (UX )i 6= αuπi , so that the decompositions are distinct.

For example, 1 0 1
0 1 1
1 1 2

 =

1
0
1

 [1 0 1
]

+

0
1
1

 [0 1 1
]

=

 1
−1
0

 [1 0 1
]

+

0
1
1

 [1 1 2
]
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Kruskal’s lemma

A classic result on identifiability is Kruskal’s lemma, which relies on the notion of the
Kruskal rank of a set of vectors.

Definition (Kruskal, 1977)

The Kruskal rank k(V) of a set of vectors V = {v1, . . . , vr} ⊂ V is the largest k integer such
that every subset of k vectors of V is linearly independent.

For example,

{0} has Kruskal rank 0;

{v, v} has Kruskal rank 1;

{v,w, v} has Kruskal rank 1; and

{v,w, v + w} has Kruskal rank 2 if v and w are linearly independent.

a “general” set of k vectors in V has Kruskal rank min{k , dim V }.
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Kruskal proved, among others, the following result.

Theorem (Kruskal, 1977)

Let A =
∑r

i=1 a1i ⊗ a2i ⊗ a3i and Ak := [aki ]ri=1. If k(A1), k(A2), k(A3) > 1 and

r ≤ 1

2
(k(A1) + k(A2) + k(A3)− 2)

then A has rank r and it is r -identifiable.

The condition k(A1) > 1 is necessary for r ≥ 2 because otherwise there exist i 6= j with
a1i = αv and a1j = βv such that

αv ⊗ a2i ⊗ a3i + βv ⊗ a2j ⊗ a3j ∈ 〈v〉 ⊗ V2 ⊗ V3 ' V2 ⊗ V ∗3

is like a matrix (which are not identifiable), and likewise for the other factors.
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Kruskal’s lemma can also be applied to higher-order tensors

A ∈ V1 ⊗ · · · ⊗ Vd

by grouping the factors or reshaping the tensor:

A ∈ (Vπ1 ⊗ · · · ⊗ Vπs )⊗ (Vπs+1 ⊗ · · · ⊗ Vπt )⊗ (Vπt+1 ⊗ · · · ⊗ Vπd )

where 1 ≤ s < t ≤ d are fixed and π is a permutation of {1, . . . , d}.
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Since the Kruskal rank of vectors in V is bounded above by dim V , the reshaped Kruskal
lemma suggests that r -identifiability can hold up to

2r ≤

(
s∏

k=1

dim Vπk

)
+

(
t∏

k=s+1

dim Vπk

)
+

(
d∏

k=t+1

dim Vπk

)
− 2

For example, if all dim Vk = n and n is sufficiently large, this yields

r ≤ nb
d−1
2
c +

1

2
nd−2b d−1

2
c − 1

in the best case (Chiantini, Ottaviani, Vannnieuwenhoven, 2017).
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Generic identifiability conjectures

There is a conjecture that rank-r higher-order tensors in V1 ⊗ · · · ⊗ Vd are mostly
r -identifiable. Specifically, Bocci, Chiantini and Ottaviani (2014) and Chiantini, Ottaviani and
Vannieuwenhoven (2014, 2017) conjecture the following. Let nk = dim Vk . If

n1 ≥ · · · ≥ nd ≥ 2, rcr =
n1 · · · nd

1 +
∑d

k=1(nk − 1)
, and rub = n2 · · · nd −

d∑
k=2

(nk − 1),

then the general rule, modulo a few exceptions, is:

- matrices (d = 2) → nowhere r -identifiable
- rank too high (r ≥ rcr) → nowhere r -identifiable
- unbalanced and high rank (n1 > rub and r ≥ rub) → nowhere r -identifiable
- (n, n, 2, 2) tensors with r = 2n − 1 → nowhere r -identifiable
- 4 special exceptions → nowhere r -identifiable
- “regular” tensors of subgeneric rank → r -identifiable almost everywhere
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Sensitivity

Because of identifiability, the tensor rank decomposition can be employed for data analysis
purposes, by identifying dominant features or explanatory factors.

However, tensors arising in applications can be corrupted by

measurement errors,

roundoff errors,

computation and simulation errors.

Consequently, there will be slight differences between the true mathematical tensor and
the perturbed tensor that you want to analyze automatically with a computer.

And so a fundamental question arises:
How can we be mathematically certain that the computed decomposition is still close
to the true rank decomposition?
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Since tensors are almost always r -identifiable, there exists some tensor decomposition
function τr taking a rank-r tensor A to its decomposition.

•
A

• B •
τr (A)

•
τr (B)

ε

κε

κ[τr ](A) := lim
ε→0

sup
B∈Bε(A)

‖τr (B)−τr (A)‖
‖B−A‖ .

The condition number quantifies the worst-case sensitivity of τr to input perturbations.
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The condition number implies the asymptotically sharp error bound:

‖τr (A)− τr (B)‖ ≤ κ[τr ](A) · ‖A − B‖+ o(‖A − B‖)

for small ‖A − B‖.
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A numerical experiment ...

Consider the matrix

A =
1

177147

88574 88574 2
88574 88574 2

2 2 177146


Computing the eigenvalue decomposition V̂ Λ̂V̂−1 of A numerically using Octave, we find
‖A− V̂ Λ̂V̂−1‖2 ≈ 1.1 · 10−15.

The eigenvalues are

numerical exact

0.000000000000000011.. 0
0.9999830649121912 0.999983064912191569... = 1− 3−10

1.000016935087810 1.000016935087808430... = 1 + 3−10

We found 15 correct digits of the exact solution.
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However, when comparing the computed eigenvector corresponding to λ1 = 1 + 3−10 to the
exact solution, we get

numerical exact

0.577350269187273 1√
3

0.577350269187273 1√
3

0.577350269194331 1√
3

We recovered only 11 digits correctly, even though the matrix V̂ Λ̂V̂−1 contains at least 15
correct digits of each entry.

It seems that the eigenvalues are computed more accurately than the eigenvectors. Clearly
not all functions are created equal!
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Assuming the eigenvalues are distinct, our computational problems can be modeled locally as
analytic functions by Kato (1995):

λ1 : Sym(Rm×m)→ R, resp. v1 : Sym(Rm×m)→ Sm−1.

What we observed above is that

0.41 ≈ |λ1(A)− λ1(A + ∆)|
‖∆‖2

� ‖v1(A)− v1(A + ∆)‖
‖∆‖2

≈ 5.33 · 103

where ‖∆‖2 ≈ 1.1 · 10−15 in this case.
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For eigenvalues and eigenvectors, in the foregoing distances, it is known from e.g. Bürgisser
and Cucker (2013) that the condition numbers are respectively

κ[λ1](A) = 1,

κ[v1](A) =
1

minj 6=1 |λ1(A)− λj(A)|
=

1

2 · 3−10
≈ 2.95 · 104

This largely explains the difference in accuracy between eigenvalues and eigenvectors in the
foregoing numerical experiment.
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Condition number of tensor rank decomposition

For the problem of computing a tensor rank decompostion of a rank-r tensor A = A1 + · · ·+ Ar

the condition number was computed by Breiding and Vannnieuwenhoven (2018).

Let Ai = a1i ⊗ · · · ⊗ adi . Then the Terracini matrix of (A1, . . . ,Ar ) is

TA1,...,Ar =
[
TA1 TA2 · · · TAr

]
where

TAi =
[
a1i ⊗ · · · ⊗ adi U1 ⊗ a2i ⊗ · · · ⊗ adi · · · a1i ⊗ · · · ⊗ ad−1i ⊗ Ud

]
and the columns of Uk contain an orthonormal basis of the vector space Vk/〈aki 〉.

Theorem (Breiding and Vannieuwenhoven, 2018)

The condition number of τr at an r-identifiable tensor A = A1 + · · ·+ Ar is

κ[τr ](A) =
1

σm(TA1,...,Ar )
, where m = r

(
1 +

d∑
k=1

(dim Vk − 1)

)
.
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If

A = A1 + · · ·+ Ar =
r∑

i=1

a1i ⊗ · · · ⊗ adi

B = B1 + · · ·+ Br =
r∑

i=1

b1
i ⊗ · · · ⊗ bd

i

are r -identifiable tensors, then for ‖A − B‖F ≈ 0 we have the asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1

‖Ai − Bπi‖2F︸ ︷︷ ︸
forward error

. κ[τr ](A)︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error
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Jennrich-type algorithms

An early algorithm for computing an exact tensor rank decomposition of some order-3 rank-r
tensors A is due to Jennrich and was described by Harshman (1970).

By using the reshaping trick, this algorithm extends to r -identifiable higher-order tensors as
well (Chiantini, Ottaviani and Vannieuwenhoven, 2017). Indeed, if

Ai = A1
i ⊗ A2

i ⊗ A3
i ∈ (Vπ1 ⊗ · · · ⊗ Vπs )⊗ (Vπs+1 ⊗ · · · ⊗ Vπt )⊗ (Vπt+1 ⊗ · · · ⊗ Vπd )

are the rank-1 terms in the decomposition of the reshaped tensor, then by r -identifiability the
Ak
i will be rank-1 tensors themselves. Their decomposition can be obtained from a compact

HOSVD.
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Assume a tensor is given in coordinates as the 3-array A ∈ Rn1×n2×n3 . Without loss of
generality, we assume that n1 ≥ n2 ≥ n3. Let

A =
r∑

i=1

ai ⊗ bi ⊗ ci .

The matrices A = [ai ], B = [bi ] and C = [ci ] of A are called factor matrices.

A fundamental assumption in Jennrich’s algorithm is that

rank(A) = rank(B) = r .

The assumption implies that the compact HOSVD of A yields a core tensor C ∈ kr×r×r ′ for
some r ′ ≤ min{r , n3}. Hence, we can assume w.l.o.g. that A ∈ kr×r×r ′ with r ′ ≥ 2 (otherwise
r -identifiability fails).
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Consider two vectors q1 and q2 in kr ′ . Then,

X := (I , I , q∗1) · A =
r∑

i=1

ai ⊗ bi ⊗ (q∗1ci ), and

Y := (I , I , q∗2) · A =
r∑

i=1

ai ⊗ bi ⊗ (q∗2ci ),

Observe that both X and Y are matrices, with respective decompositions

X = Adiag(q∗1c1, . . . , q
∗
1cr )︸ ︷︷ ︸

DX

BT and Y = Adiag(q∗2c1, . . . , q
∗
2cr )︸ ︷︷ ︸

DY

BT .
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By the fundamental assumption in Jennrich’s algorithm, A,B ∈ kr×r are invertible matrices.
Assume additionally that DX ,DY ∈ kr×r are invertible. Then,

XY−1 = (ADXBT )(ADY BT )−1

= (ADXBT )(B−TD−1Y A−1)

= A(DXD−1Y )A−1

In other words, XY−1 has an eigenvalue decomposition with eigenvalues on the diagonal of
DXD−1Y and eigenvectors A.
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Next, consider the 1-flattening of A:

A(1) =
r∑

i=1

ai (bi ⊗ ci )
T = A(B � C )T ,

where B � C := [bi ⊗ ci ]
r
i=1 ∈ Rrr ′×r .

Since A is invertible, we get

A−1A(1) = A−1A(B � C )T = (B � C )T .

By viewing the columns of B � C at tensors in kr ⊗ kr ′ , we see that

bi ⊗ ci ' bic
T
i

so bi and ci can be obtained from a rank-1 matrix decomposition (compact SVD) of the ith
column of B � C , viewed as an r × r ′ matrix.
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The foregoing discussion can be formulated as Jennrich’s algorithm.

Algorithm 1: Standard PBA Algorithm

input : A tensor A ∈ Rn1×n2×n3 , n1 ≥ n2 ≥ r , of rank r .
output: Factor matrices (A,B,C ) such that the rank-1 tensors in the CPD of A are

Ai = ai ⊗ bi ⊗ ci .

Compute a compact HOSVD A = (U1,U2,U3) · C ;
Sample a random r ′ × 2 matrix Q = [q1 q2] with orthonormal columns;
X ← (I , I , q∗1 ) · C ;
Y ← (I , I , q∗2 ) · C ;
Compute eigendecomposition XY−1 = ADA−1;

B � C ← (A−1C(1))
T ;

A← U1A;
for For each column zi of B � C do

Let Zi be the matrix such that vec(Zi ) = zi ;

Compute rank-1 truncated SVD Zi = σuvT ;
bi ← σU2u;
ci ← U3v ;

end
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Numerical issues

A variant of this algorithm is implemented in Tensorlab v3.0 as cpd gevd. Let us perform an
experiment with it.

We create the first tensor that comes to mind: a rank-25 random tensor A of size 25× 25× 25:

>> Ut{1} = randn(25,25);

>> Ut{2} = randn(25,25);

>> Ut{3} = randn(25,25);

>> A = cpdgen(Ut);
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Compute A’s decomposition and compare its distance to the input decomposition, relative to
the machine precision ε ≈ 2 · 10−16:

>> Ur = cpd_gevd(A, 25);

>> E = kr(Ut) - kr(Ur);

>> norm( E(:), 2 ) / eps

ans =

8.6249e+04

This large number can arise because of a high condition number. However,

>> kappa = condition_number( Ut )

ans =

2.134
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It thus appears that there is something wrong with the algorithm when running in
floating-point arithmetic, even though it is a mathematically sound algorithm for computing
low-rank CPDs. The reason is the following.

Theorem (Beltrán, Breiding and Vannieuwenhoven, 2019)

Many tensor rank decomposition algorithms based on a reduction to Rn1×n2×2 are numerically
unstable: the forward error produced by the algorithm divided by the backward error is “much”
larger than the condition number on an open set of inputs.

Aforementioned so-called pencil-based algorithms (including Jennrich’s algorithm) should be
used with care as they do not necessarily yield the highest attainable precision.
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The instability of the algorithm leads to an excess factor ω on top of the condition number of
the computational problem:
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Test with random rank-1 tuples.
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Application: reduced order models of expensive functions

Because each rank-1 summand in a tensor rank decomposition of a tensor is usually unique and
always easy to interpret, the tensor rank decomposition is often used as a tool for explorative
data analysis or a reduced order model of (potentially incomplete) multidimensional data.

factor analysis for analyzing underlying causes in psychology (Carroll and Chang, 1970;
Harshman, 1970);

identifying spectra of fluorophores in fluorenscence spectroscopy (Appellof and Davidson, 1981);

estimation of the parameters of some latent variable models like single exchangeable topic
models, mixtures of Gaussians, and hidden Markov models (Anandkumar et al., 2014);

tensor-based collaborative filtering and recommender systems (Frolov and Oseledets, 2017);

exploratory analysis in sports analytics applications (Verstraete, Decroos, Coussement,
Vannieuwenhoven and Davis, 2020; Geens, 2020);

reduced order model for thermodynamic quantities of multicomponent alloys (Coutinho,
Vervliet, De Lathauwer and Moelans, 2020);

reduced order model for power output of curved solar panels (De Coppel, 2021);

reduced order model for finite element matrices of parameterized joint elements in lattices (De
Weer, Vannieuwenhoven, Lammens, Meerbergen, 2021).
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Reduced order model

Many problems in engineering and science consist of evaluating a complex multivariate
function that describes some aspect of reality and which can only be understood through
proxies. Such functions are expensive to evaluate, because they either require

costly physical measurements or

expensive numerical computations like solving (stochastic) partial differential
equations.

These functions typically feature in design, process, shape or topology optimization and are to
be evaluated often.

Reduced order models attempt to approximate these complicated functions by simpler,
explicit models that are computationally inexpensive to evaluate on some domain.

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 51 / 64



Tensor decompositions can be used to construct reduced order models. In particular, the
functional version of the tensor rank decomposition provides a separable approximation

f (x1, . . . , xd) =
r∑

i=1

f 1
i (x1)f 2

i (x2) · · · f d
i (xd) · Ai

where f : kd → km1×···×mp , the f k
i are univariate functions, and Ai ∈ km1×···×mp are tensors

(they could be structured, e.g., rank-1).
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For constructing the approximation, there are two main discretization approaches:

1 construct a (sparsely sampled) tensor product grid, or

2 choose a finite-dimensional function space.

The first approach has the advantage that optimally shaped functions will be detected
automatically through the tensor decomposition. Its disadvantage is that only sampling on a
tensor product grid is possible, which can be incompatible with known function evaluations.

The second approach has the advantage that the training samples do not need to lie on a
tensor product grid. Its disadvantage is that choosing the function space optimally may
require some hand tuning.

I will discuss only option 1, discretizing the domain.
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The domain is implicitly discretized with a tensor product grid. The number and type of
nodes (Chebychev nodes, unfiformly spaced, etc) can be chosen for each variable separately.

A functional tensor rank decomposition can be obtained as follows.

1 Sample N nodes of the tensor product grid at random (without replacement).

2 Evaluate the function at these nodes, resulting in an incomplete tensor A.

3 Compute an approximate tensor rank decomposition of A using optimization algorithms.

4 Norm-balance the vectors aki in the rank-1 tensors Ai = a1i ⊗ · · · ⊗ adi . The vectors aki
represent evaluations of some unknown function in the nodes of the tensor grid.

5 Interpolate or approximate these evaluations using any univariate interpolation /
least-squares approximation technique.

Steps 1–3 are an example of tensor completion, where an unknown tensor is fitted with a
low-rank model for predicting the missing entries.
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For a potentially unique recovery of a rank-r tensor from only N measurements on an
n1 × · · · × nd tensor product grid, there should be at least

N ≥ Nmin = r

(
1 +

d∑
k=1

(nk − 1)

)
,

measurements for this algebraic compressed sensing problem (Breiding, Gesmundo,
Micha lek, Vannieuwenhoven, 2021).
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Oversampling (N = φNmin with φ > 1) is usually required due to the nonoptimality of random
sampling, as in this experiment from Swijsen, Van der Veken, Vannieuwenhoven (2021):

This problem can be mitigated by adding a penalty term to punish high finite differences
(Yokota, Zhao, Cichocki, 2016).
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De Weer, Vannieuwenhoven, Lammens and Meerbergen (2021) used the foregoing setup for
constructing a numerical model of a new type of parameterized finite element, to be used
in the finite element method for solving partial differential equations:

The small 24 × 24 element matrix of these
joints can be computed essentially through
a numerical simulation that involves solving
a system in a few thousands of unknowns
(depending on the desired accuracy).

Given the large number of configurations
of the joints, this direct approach is infeasible.

Instead we constructed a reduced order model
for this (unknown) function.
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A good approximation was possible with a low-rank tensor rank decomposition (10 or 34,
depending on the setup):

Net gains in time are realized as soon as more than 1000 joint configurations are used. This
bound is easily reached for example in topology optimization.
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Conclusions

The tensor rank decomposition is a simple decomposition that enables exploratory and
interpretative data analysis because of its identifiability properties.
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