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Linear algebra

Multilinear algebra

is extended to

Singular value decomposition

= + · · ·+

Tensor rank decomposition

= + + · · ·+
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Tensors originating in applications are rarely exactly of low rank due to various sources of
errors.

We are thus looking to approximate a tensor A ∈ V1 ⊗ · · · ⊗ Vd by a rank-r tensor.
Formulated as an optimization problem, we seek to solve the distance minimization problem

min
rank(B)≤r

1

2
‖B − A‖2F ,

where ‖ · ‖F is the Euclidean norm.

This formulation can be extended to incomplete tensors by only measuring the distance in
the known coordinates.
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A complication

In contrast to the matrix, multilinear, and tensor trains ranks, the set of tensors of bounded
tensor rank,

σ0r = {A ∈ V1 ⊗ · · · ⊗ Vd | rank(A) ≤ r},

is not closed.

For example, the tensors on the curve

Aε =
1

ε
(a1 + εb1)⊗ (a2 + εb2)⊗ (a3 + εb3)− 1

ε
a1 ⊗ a2 ⊗ a3

converge to the rank-3 tensor

A0 = b1 ⊗ a2 ⊗ a3 + a1 ⊗ b2 ⊗ a3 + a1 ⊗ a2 ⊗ b3

as ε→ 0.
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Geometrically what happens is that A0 is a point on a tangent line that is not a secant line:

A0

a1 ⊗ a2 ⊗ a3

(a1 + εb1)⊗ (a2 + εb2)⊗ (a3 + εb3)

Aε
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The following result, by combining de Silva and Lim (2008) and Breiding and
Vannieuwenhoven (2018a) partially explains what happens:

Proposition

Let A be a tensor of rank s > r and assume there exists a sequence of identifiable rank-r
tensors

A(k) = A(k)
1 + · · ·+ A(k)

r

such that A(k) → A as k →∞. Then,

1 there exist i 6= j such that ‖A(k)
i ‖ → ∞ and ‖A(k)

j ‖ → ∞, and

2 κ[τr ](A(k))→∞.
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Here’s what happens to the condition number in one of Paatero’s (2000) models:
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Fortunately, Landsberg (2012) states that the troublesome set of tensors with a rank strictly
greater than r has Lebesgue measure zero within

σr = σ0r =

{
lim
k→∞

A(k) | rank
(

A(k)
)
≤ r

}
.
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Unfortunately, for the approximation problem this can still be disastrous! Imagine what
happens when σr would be like the nodal cubic with σr \ σ0r at the node:
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Rank-3 tensors in R2×2×2 never have a best rank-2 approximation (de Silva and Lim, 2008).
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It can nevertheless be shown, for real vector spaces and real rank, that there exists an open
tubular neighborhood T ⊂ V1 ⊗ · · · ⊗ Vd of (a dense open subset of) σ0r in the sense of
Hirsch (1976) such that for all tensors A ∈ T , the approximation problem

min
rank(B)≤r

‖B − A‖F

is well posed for all A ∈ T (if σr 6= V1 ⊗ · · · ⊗ Vd).

Qi, Micha lek and Lim (2020) proved that for tensor products of complex vector spaces and the
corresponding complex tensor rank, the above approximation problem is well posed for
almost all A ∈ V1 ⊗C · · · ⊗C Vd .

I will assume in the remainder an A is given for which the problem is well posed.
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Alternating least squares methods

Usually we want to find both the closest rank-r approximation to A, given as an
n1 × · · · × nd array in coordinates, and its decomposition into rank-1 tensors.

Traditionally, the set of tensors of bounded rank was parameterized by factor matrices:

p : kn1×r × · · · × knd×r → kn1×···×nd , (A1, . . . ,Ad) 7→
r∑

i=1

a1i ⊗ · · · ⊗ adi .

With this parameterization, the optimization problem for finding both the best rank-r
approximation and its decomposition was formulated as

min
(A1,...,Ad )∈kn1×r×···×knd×r

1

2
‖p(A1, . . . ,Ad)− A‖2F .
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The alternating least squares (ALS) method by Carroll and Chang (1970) is based on the
observation that the objective function is equivalent to

min
Aj∈knk×r ,
j=1,...,d

1

2
‖A(k) − Ak(A1 � · · · � Ak−1 � Ak+1 � · · · � Ad)T‖2F .

for every k = 1, 2, . . . , d , and where

A� B := [ai ⊗ bi ]i

is the Khatri–Rao product.
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If Aj , j 6= k , are fixed, then finding the optimal Ak becomes a linear problem! Indeed,
consider the (compact) QR factorization

(A1 � · · · � Ak−1 � Ak+1 � · · · � Ad) = QR.

Then,

1

2
‖AT

(k) − QRAT
k ‖2F =

1

2
‖QQ∗AT

(k) − QRAT
k ‖2F +

1

2
‖(I − QQ∗)AT

(k)‖
2
F .

Since the second summand is constant, it suffices to minimize

1

2
‖QQ∗AT

(k) − QRAT
k ‖2F =

1

2
‖Q∗AT

(k) − RAT
k ‖2F

over Ak ∈ knk×r . Hence, we can take

AT
k = R−1Q∗AT

(k)

as optimal solution.
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The standard ALS method then solves the optimization problem by cyclically fixing all but
one factor matrix Ak and alternatingly updating A1, . . . ,Ad .

Algorithm 1: ALS method

input : A tensor A ∈ kn1×···×nd .
input : A target rank r .
output: Factor matrices (A1, . . . ,Ad) of a CPD approximating A.

Initialize factor matrices Ak ∈ knk×r (e.g., entries sampled i.i.d. from N(0, 1), or truncated
HOSVD);

while Not converged do
for k = 1, 2, . . . , d do

Z ← A1 � · · · � Ak−1 � Ak+1 � · · · � Ad ;
Compute compact QR decomposition Z = QR;

Ak ← (R−1Q∗AT
(k))

T ;

end

end
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The ALS scheme produces a sequence of incrementally better approximations. However, the
convergence properties of the ALS method are poorly understood.

The scheme has accumulation points, but it is not known if they correspond to critical points
of the objective function. That is, we do not know if the accumulation points of the ALS
scheme correspond to points satisfying the first-order optimality conditions.

Uschmajew (2012) proved local convergence to critical points where the Hessian is positive
semi-definite and of maximal rank.
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Numerical experiments

ALS is a very fast, effective and
reliable method when generating
random 10 × 11 × 12 tensors of
rank 15 in the usual way: sample
the entries of the factor matrices
i.i.d. from N(0, 1).

Observe that 98% of random ini-
tializations converge to a solution.

Tensor decomposition, solved!

But is it?
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The condition number, once more

There is widespread evidence, however, that the performance of iterative solution methods
for a computational problem is often correlated with the condition number of the solution.

This holds, among others, for

solving linear systems with the steepest descent and conjugate gradient methods;

solving systems of linear inequalities with the perceptron and ellipsoid methods;

solving polyhedral cone feasibility problems with the interior point method;

solving homogeneous polynomial systems with homotopy continuation; and

solving (Riemannian) nonlinear least squares problems with the (Riemannian)
Gauss–Newton method.

The last of these can be found in Breiding and Vannieuwenhoven (2018c) and the others are
discussed in Bürgisser and Cucker (2013).
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Experiments by Beltrán, Breiding and Vannieuwenhoven (2019) showed that sampling rank-r
tensors by sampling random factor matrices from a Gaussian ensemble results in a very
favorable distribution of condition numbers:
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We do not believe that sampling factor matrices produces a realistic probability density
function on σr , however.

For a more realistic Gaussian-like distribution on σr (it equals the Gaussian distribution
when σr perfectly fills the ambient space), the following was proved.

Theorem (Beltrán, Breiding and Vannieuwenhoven (2021))

Consider n1 × · · · × nd tensors with ni ≥ 2. Then,

E
A∼N(σ2)

[κ[τ2](A)] =∞.

If ni ≥ 3 and r ≥ 3 and additionally r -identifiability holds and (r − 2)-identifiability holds for
(n1 − 2)× · · · × (nd − 2) tensors, then

E
A∼N(σr )

[κ[τr ](A)] =∞.
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Sampling the factor matrices randomly from a Gaussian ensemble does not result in an
expected value ∞ of the condition number, empirically. Therefore:

Sampling factor matrices randomly oversamples the well-conditioned areas of σr , while
undersampling the high-condition areas.
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Simply altering the scaling of the
rank-1 tensors by multiplying the ith
tensor with 0.75i , so the last tensor
is approximately 1.5% the size of the
first one catastrophically destroys
convergence.
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It is interesting to note that the
condition number of tensor rank
decomposition τr , taking a rank-r
tensor to its rank-1 tensors, is
invariant under such scaling!
What’s happening?

ALS is solving a different problem:
it recovers the factor matrices rather
than rank-1 tensors.

Vannieuwenhoven (2017) describes a
condition number for that problem,
which does blow up when
introducing differences in scale. This
potentially explains the behavior.
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Riemannian optimization

The parameterization of a collection of rank-1 tensors via factor matrices has an additional
problem: There is an entire (d − 1)-dimensional family of equivalent representations, namely

{(α1a1)⊗ · · · ⊗ (αdad) | α1 · · ·αd = 1}.

This has the nasty implication that minimizers of the optimization problem

min
(A1,...,Ad )∈kn1×r×···×knd×r

1

2
‖p(A1, . . . ,Ad)− A‖2F

always occur in a positive-dimensional family. This implies that the Hessian matrix at a
local minimizer is always singular, and likewise for the Gauss–Newton approximation.
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A way to overcome this problem is to formulate the approximation and decomposition problem
as an optimization problem over rank-1 tensors rather than over factor matrices. If
r -identifiability holds, the positive-dimensional family of equivalent representations disappears.

Given

a tensor A ∈ Rn1×···×nd , and

a target rank r ∈ N,

find a minimizer of

min
(B1,...,Br )∈S×···×S

1

2
‖B1 + · · ·+ Br − A‖2F , (TAP)

where S is the set of all rank-1 tensors:

S = {A | rank(A) = 1}.

Breiding and Vannieuwenhoven (2018b; c) introduced this formulation as the tensor rank
approximation problem (TAP).
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Before we can continue, we need to known more about the set of rank-1 tensors S. It is the
smooth Segre manifold (Harris, 1992; Lee, 2013) Globally it looks like a curved object ...
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. . . but zooming in ...

... it locally looks like a 2-dimensional linear space! For a 2-dimensional manifold, this is true
at every point.
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A tangent vector to an embedded submanifold M⊂ Rn at p is a vector tp ∈ Rn such that
there exists a smooth curve γ(t) ⊂M, t ∈ (−1, 1), for which p = γ(0) and tp = γ′(0).

p

γ′(0)

γ(t)

TpM

M

The tangent space TpM⊂ Rn is the set of all tangent vectors. For an m-dimensional
manifold it is an m-dimensional linear subspace. (It can also be equipped with the inner
product from Rn)
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Riemannian optimization solves constrained optimization problems

min
x∈M

f (x)

where

1 the constraint set M is a smooth manifold, and

2 the objective function f :M→ R is a smooth map.

See Absil, Mahoney and Sepulchre (2008) and Boumal (2020).
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Continuous optimization methods for minimizing f : Rn → R perform the following steps:

Continuous optimization

1 Choose a starting point x0;

2 For k ← 1, 2, 3, . . .

3.a Determine a search direction tk ;
3.b Determine a step length αk ;
3.c Go to xk+1 ← xk + αktk .

Continuous optimization methods mainly differ in the choice of search direction:

method search direction tk

steepest descent −∇xk f
conjugate gradient −∇xk f + βktk−1
Newton −(∇2

xk
f )−1(∇xk f )
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Recall that Newton’s method is based on a truncated series expansion of f :

f (xk + tk) = f (xk) + tTk (∇xk f ) +
1

2
tTk (∇2

xk
f )tk + o(‖δ‖2)

The minimum is achieved where the gradient

δ̇ 7→ δ̇T (∇xk f ) + δ̇T (∇2
xk

f )tk

vanishes identically. Hence, we need to take

tk = −(∇2
xk

f )−1(∇xk f ),

insofar as the Hessian matrix ∇2
xk

f is invertible.
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While Newton’s method has great quadratic local convergence, a plain Newton method is
not suitable because:

1 the Hessian matrix can fail to be invertible,

2 the Hessian matrix might not be positive definite so the search direction can fail to be a
descent direction,

3 it has no guaranteed global convergence, and

4 the Hessian matrix and its inverse can be expensive to compute.

These problems are addressed by

1 modifying the Hessian matrix so it is always positive definite,

2 incorporating a trust region or line search scheme, and

3 using cheap approximations of the true Newton direction −(∇2
xk

f )−1(∇xk f ) through
iterative Krylov methods.
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Riemannian nonlinear least squares problems

The TAP is a specific type of Riemannian optimization problem, called a nonlinear least
squares problem because the objective function can be written as

f :M→ R, x 7→ 1

2
‖F (x)‖2

for some smooth map F :M→ RN .

Since the TAP is

min
(B1,...,Br )∈S×···×S

1

2
‖B1 + · · ·+ Br − A‖2F ,

this is indeed a nonlinear least squares problem. A default choice for solving Riemannian
nonlinear least squares problems is the Riemannian Gauss–Newton method.
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In this setting, the gradient of a least-squares objective function f at x is

∇x f = (dxF )T (F (x)),

where dxF : TxM→ RN is the derivative (or Jacobian matrix in coordinates) of
F :M→ RN .
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The Riemannian Hessian matrix of f is

∇2
x f = (dxF )T (dxF ) + 〈dx(dxF ),F (x)〉.

Near a solution, we hope to have F (x∗) ≈ 0, so that the last term often has a negligible
contribution.

This reasoning leads to the Gauss–Newton approximation of the Riemannian Hessian matrix

∇2
x f ≈ (dxF )T (dxF ) =: Gx .

This matrix is always positive semidefinite!

Replacing the Hessian with the Gauss–Newton approximation yields local linear
convergence. If f (x∗) = 0 at a solution, then the local convergence is quadratic.
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Trust region globalization

The method sketched thus far has no global convergence guarantees. Furthermore, the
Gauss–Newton approximation of the Hessian could be very close to singular, resulting in large
updates.

The trust region globalization scheme can solve both of these problems. The idea is to trust
the local Gauss–Newton model at xk ,

m(xk + tk) = f (xk) + tTk (∇xk f ) +
1

2
tTk Gxk tk ,

only in a small neighborhood of radius ∆k around xk .
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Instead of solving for the unconstrained minimizer of tk 7→ m(xk + tk), a trust region method
solves the trust region subproblem:

min
tk∈Txk

M
m(xk + tk) subject to ‖tk‖ ≤ ∆k ,

where ∆k > 0 is the trust region radius.

tk
xk
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The trust region radius is modified in every step according to a fixed scheme. Assume that the
update direction is tk with ‖tk‖ ≤ ∆k .

The trustworthiness of the Gauss–Newton model is defined as

ρk =
f (xk)− f (xk + tk)

m(xk)−m(xk + tk)
.

The trust region radius is updated as follows:

If the trustworthiness ρk is high (e.g., ρk ≥ 0.75) and ‖tk‖ ≈ ∆k , then the trust region
radius is increased (e.g, ∆k+1 = 2∆k).

If the trustworthiness ρk is very low (e.g., ρk ≤ 0.25), then the trust region radius is
decreased (e.g., ∆k+1 = ∆k/4).
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For (approximately) solving the trust region subproblem one can exploit the following fact. If
the unconstrained minimizer

t∗k = −G−1xk
(∇xk f ) = (dxk F )†F (xk)

lies in the trusted region, ‖t∗k‖ ≤ ∆k , then this is the optimal solution of the trust region
subproblem.

Otherwise, there exists a regularizer λ > 0 such that the optimal solution t∗k satisfies

(Gxk + λI )t∗k = −(dxk F )T (F (xk))

with ‖t∗k‖ = ∆k . Nocedal and Wright (2006) discuss strategies for finding λ.
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Stepping in the search direction

The trust region scheme simultaneously determines

the search direction tk and

the step length αk = 1.

Next, we need to move xk in the direction of tk . However, we cannot simply add xk + αktk as
in the Euclidean case ...

xk + αktk

M
xk
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The way to generalize this to manifolds is to construct a smooth curve γtk (t) such that

γtk (0) = xk and γ′tk (0) = tk ,

and that the selection of the curve it itself smooth in (xk , tk). The exponential map satisfies
these conditions, among others. Other maps that satisfy these properties are called retraction
operators.

xk + αktk

γtk (αk)
M

TxkM

xk
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Given a retraction operator γ for the Segre manifold S, a retraction operator Γ for the product
manifold S×r = S × · · · × S at (A1, . . . ,Ar ) is

ΓṪ1,...,Ṫr (t) :=
(
γṪ1(t), . . . , γṪr (t)

)
,

which is called the product retraction.

Known retraction operators for the rank-1 tensors S are

rank-(1, . . . , 1) T-HOSVD and ST-HOSVD (Kressner, Steinlechner, Vandereycken, 2014);

the exponential map (Swijsen, Van der Veken, Vannieuwenhoven, 2021).

Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 49 / 66



Skeleton of Riemannian Gauss–Newton method with trust region

Algorithm 2: Riemannian Gauss–Newton method outline

input : A tensor A ∈ kn1×···×nd .
input : A target rank r .
output: Rank-1 tensors (A1, . . . ,Ar ) of a CPD approximating A.

Choose random initial points Ai ∈ S;
Let x1 ← (A1, . . . ,Ar ), and set k ← 0;
Choose a trust region radius ∆ > 0;
while not converged do

Solve the trust region subproblem, resulting in tk ∈ TaS×r ;
Compute the tentative next iterate xk+1 ← Γtk (1);
Accept or reject the next iterate. If the former, increment k ;
Update the trust region radius ∆k ;

end
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A practical implementation

In Breiding and Vannieuwenhoven (2018b), we implemented a Riemannian Gauss–Newton
method for solving the TAP.

The method was implemented as described above, with the following choices:

1 The trust region subproblem is solved with the dogleg method;

2 hot restarts randomization was added to escape high-condition areas; and

3 retraction with fast compressed rank-(1, . . . , 1) ST-HOSVD approximation.
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The dogleg step approximates the optimal solution t∗k of the trust region subproblem by

tk =


tN = −(dxk F )†(F (xk)) if ‖tN‖ ≤ ∆k

tC = − (∇xk
f )TGxk

(∇xk
f )

‖(∇xk
f )‖2 ∇xk f if ‖tN‖ > ∆k and ‖tC‖ ≥ ∆k

tI := tC + (τ − 1)(tN − tC) s.t. ‖tI‖ = ∆k , otherwise

.

where 1 ≤ τ ≤ 2 is the solution of ‖tC + (τ − 1)(tN − tC)‖2 = ∆2
k .
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Let
Σr : S × · · · × S, (A1, . . . ,Ar ) 7→ A1 + · · ·+ Ar .

The Gauss–Newton direction
tN = −G−1xk

(∇xk f ).

is vital to the dogleg step. Unfortunately, Gxk = (dxk Σr )T (dxk Σr ) can be arbitrarily close to a
singular matrix (even under r -identifiability).

In fact, we showed that Gxk is an ill-conditioned matrix if and only if the CPD repre-
sented by xk is ill-conditioned.

Whenever Gxk is close to a singular matrix we apply random perturbations to the current
decomposition xk ∈ S×r until Gxk is sufficiently well-behaved. We call this hot restarting.
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Numerical experiments

Breiding and Vannieuwenhoven (2018b) extensively compared their Riemannian Gauss–Newton
implementation with some state-of-the-art Euclidean nonlinear least squares solvers in
Tensorlab v3.0 by Vervliet et al. (2016). Specifically, both nls lm and nls gndl were tested
with the LargeScale option turned both off and on.

These alternative approaches parameterize the rank-1 tensors via factor matrices.
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We consider parameterized1 tensors in Rn1×n2×n3 with varying condition numbers. There are
three parameters:

1 c ∈ [0, 1] regulates the “colinearity” of the factor matrices

2 s ≥ 1 regulates the scaling, and

3 r is the rank.

Typically,

1 increasing c increases the condition number from Breiding and Vannieuwenhoven (2018a).

2 increasing s increases the factor matrices condition number from Vannieuwenhoven
(2017).

3 increasing r decreases the probability of finding a decomposition.

1See the afternotes for the precise construction.
Nick Vannieuwenhoven (KU Leuven) Tensor decompositions and their applications 55 / 66



The true rank-r tensor is then

A =
r∑

i=1

a1i ⊗ a2i ⊗ a3i .

Finally, we normalize the tensor and add random Gaussian noise E ∈ Rn1×n2×n3 of magnitude
τ :

B =
A
‖A‖F

+ τ
E
‖E‖F

.

The tensor B is the one we would like to approximate by a tensor of rank r .
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We will choose k random starting points and then apply each of the methods to each of the
starting points.

Our performance criterion (on a single processor) is the expected time to success (TTS).

Let

1 the probability of success be pS ,

2 the probability of failure be pF = 1− pS ,

3 a successful decomposition take mS seconds, and

4 a failed decomposition take mF seconds.

Then, the expected time to a first success is

E[TTS] =
∞∑
k=0

pk−1
F pS(mS + (k − 1)mF ) =

pSmS + pFmF

pS
.
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Speedup of RGN-HR

Model 1, 15× 15× 15 tensors
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Speedup of RGN-HR

Model 1, 15× 15× 15 tensors
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Speedup of RGN-HR

Model 1, 15× 15× 15 tensors
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Speedup of RGN-HR

Model 2, 13× 11× 9 tensors
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κ = 3.0 RGN-HR LM (TL) GNDL (TL)

Success 100% 100% 90%
E[TTS] 1.4 15.6 81.6
Speedup - 11.1 58.3
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κ = 3.1 RGN-HR LM (TL) GNDL (TL)

Success 100% 70% 70%
E[TTS] 2.5 38.9 127.2
Speedup - 15.6 50.9
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κ = 3.8 RGN-HR LM (TL) GNDL (TL)

Success 100% 0% 60%
E[TTS] 2.7 Inf 188.1
Speedup - Inf 69.7
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κ = 14.3 RGN-HR LM (TL) GNDL (TL)

Success 100% 70% 40%
E[TTS] 1.5 33.1 407.8
Speedup - 22.1 271.9
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κ = 13.7 RGN-HR LM (TL) GNDL (TL)

Success 100% 10% 40%
E[TTS] 3.2 387.0 167.7
Speedup - 120.9 52.4
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κ = 9.4 RGN-HR LM (TL) GNDL (TL)

Success 100% 0% 60%
E[TTS] 2.3 Inf 330.9
Speedup - Inf 143.9
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κ = 123.4 RGN-HR LM (TL) GNDL (TL)

Success 100% 0% 60%
E[TTS] 3.7 Inf 310.0
Speedup - Inf 83.8
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κ = 114.8 RGN-HR LM (TL) GNDL (TL)

Success 100% 0% 40%
E[TTS] 3.2 Inf 500.1
Speedup - Inf 156.3
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κ = 130.3 RGN-HR LM (TL) GNDL (TL)

Success 100% 0% 50%
E[TTS] 3.0 Inf 391.9
Speedup - Inf 130.6
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κ = 190.7 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 100% 100%
E[TTS] 4.3 5.0 2.1
Speedup - 1.2 0.49
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κ = 223.9 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 40% 70%
E[TTS] 4.0 34.9 12.6
Speedup - 8.7 3.2
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κ = 132.2 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 0% 0%
E[TTS] 3.0 Inf Inf
Speedup - Inf Inf
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κ = 3308.1 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 0% 40%
E[TTS] 6.9 Inf 36.8
Speedup - Inf 5.3
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κ = 5931.0 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 0% 0%
E[TTS] 6.3 Inf Inf
Speedup - Inf Inf
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κ = 4332.2 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 90% 0% 0%
E[TTS] 5.8 Inf Inf
Speedup - Inf Inf
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κ = 6554.3 RGN-HR LM-tPCG (TL) GNDL-tPCG (TL)

Success 100% 0% 0%
E[TTS] 8.2 Inf Inf
Speedup - Inf Inf
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Overview

1 Introduction (5’)

2 A complication (15’)

3 Alternating least squares methods (30’)

4 Riemannian quasi-Newton optimization method (50’)
Riemannian optimization
Riemannian nonlinear least squares problems
Trust region globalization
Stepping in the search direction
A practical implementation
Numerical experiments

5 Conclusions
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Conclusions

Formulating the approximation and decomposition problem as a Riemannian optimization
problem on the product Segre manifold results in state-of-the-art methods for approximating a
tensor by a low-rank CPD, especially for more difficult models.

Model 2, 13× 11× 9 tensors
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